2016 International Land Model Benchmarking Workshop

2016<u>.5.17</u>

# <sup>1</sup>LS3MIP and <sup>2</sup>GSWP3

<sup>1</sup>Land Surface, Snow, Soil-moisture Model Intercomparison Project <sup>2</sup>Global Soil Wetness Project Phase 3

<sup>1</sup><u>Hyungjun Kim</u>, <sup>2</sup>Bart van den Hurk, <sup>3</sup>Gerhard Krinner, <sup>4</sup>Sonia Seneviratne, <sup>5</sup>Chris Derksen, and <sup>1</sup>Taikan Oki <sup>1</sup>U-Tokyo Japan; <sup>2</sup>KNMI The Netherlands; <sup>3</sup>LGGE Grenoble France; <sup>4</sup>ETH Zürich Switzerland; <sup>5</sup>Environment Canada



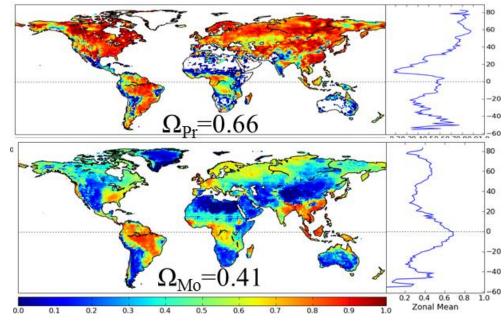
# Land Surface, Snow, Soil moisture

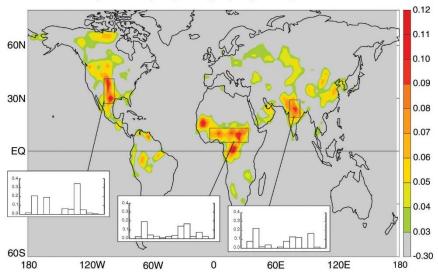
# Model Intercomparison Project

Bart van den Hurk, Gerhard Krinner, Sonia Seneviratne, Chris Derksen, Hyungjun Kim and Taikan Oki



#### + GLACE-CMIP (GEWEX) + ESM-SnowMIP (CIIC)


<u>Scientific Goal:</u> To provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions for ESMs in CMIP6.


| CliC<br>Climate-Cryosphere                    | <b>CLIVAR</b><br>Ocean-Atmosphere                         | <b>GEWEX</b><br>Land-Atmosphere | SPARC<br>Troposphere-<br>Stratosphere | CORDEX<br>Regional Climate<br>Downscaling |  |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------|---------------------------------|---------------------------------------|-------------------------------------------|--|--|--|--|
| Regional Sea-Level Change and Coastal Impacts |                                                           |                                 |                                       |                                           |  |  |  |  |
|                                               | Cryosphere - Melting Ice and Global Consequences          |                                 |                                       |                                           |  |  |  |  |
|                                               | Cha                                                       | ility                           |                                       |                                           |  |  |  |  |
| Cloud Circulation and Climate Sensitivity     |                                                           |                                 |                                       |                                           |  |  |  |  |
|                                               | Understanding and Predicting Weather and Climate Extremes |                                 |                                       |                                           |  |  |  |  |

### Gaps to be Filled by LS3MIP

+ Map (uncertainty of) water resources over the 20th century (and beyond)

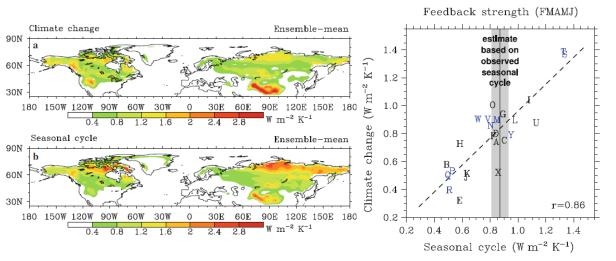
Kim (2010) showing that disparity in simulated runoff from uncertainty in ensemble precipitation is much less than model uncertainty : LMIP/GSWP3





Land-atmosphere coupling strength (JJA), averaged across AGCMs

+ Explore model-dependent landatmospheric coupling

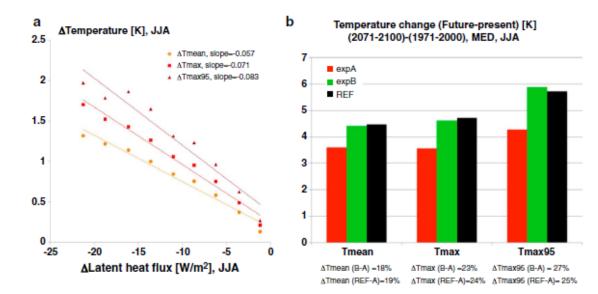

Koster et al (2006): GLACE result showing model-specific land-atmospheric coupling strength : LFMIP

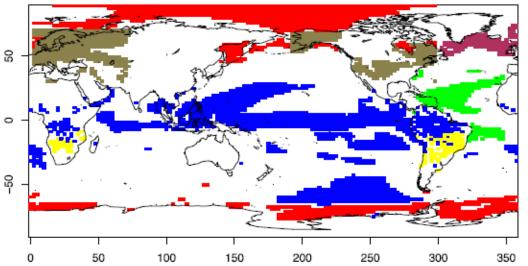
### Gaps to be Filled by LS3MIP

+ Ability of climate models to capture observed rates of spring snow cover reductions

Brutel-Vuilmet et al. (2012); MP5 +/- SC 0.8 Derksen and Brown (2012): Normalized June SCE CMIP5 models 0.6 underestimate the significant 0.4 reductions in spring snow cover extent observed 0.2 during the satellite era : **ESM-SnowMIP** 0.0 1960 1980 2000 2020 2040 2060 2080 2100 Veat

+ Linkage between snow-albedo feedback and 21st century warming

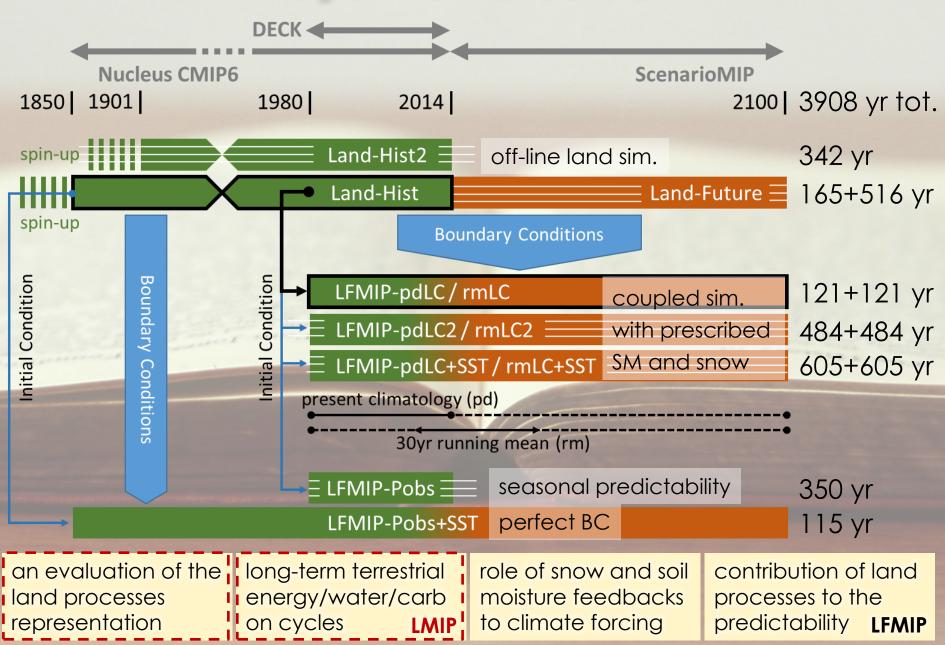




Qu and Hall (2013): The spread in snow albedo feedback accounts for much of the CMIP5 spread in the 21st century warming of Northern Hemisphere land masses : ESM-SnowMIP

### Gaps to be Filled by LS3MIP

+ Soil moisture affecting the climate change signal

Seneviratne et al (2014): GLACE-CMIP5 result showing effect of prescribing 20th century soil moisture climatology : LFMIP






+ (Seasonal) Predictability can alter in a warmer climate

Del Sole et al (2014): Changes in seasonal predictability as a result of a trade-off between more signal and more noise in a warmer world : LFMIP

#### **Experiment Structure**



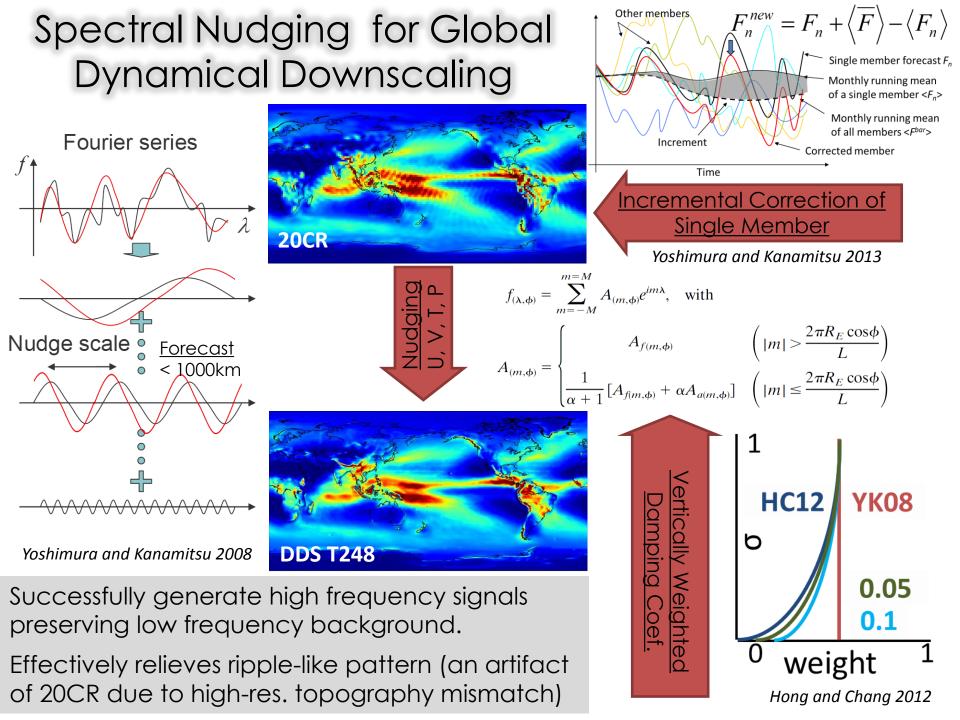
#### Global Soil Wetness Project Phase 3

### Model Input Data for EXP1 (long-term retrospective)

#### Dynamical Global Downscaling **Two-pass Bias Correction GSWP3** \* Spectral Nudging using GSM \* LDMF Daily Correction (Yoshimura and Kanamitsu, 2008) (Kim et al., in prep.) \* Parametric Monthly Correction \* Single Ensemble Correction (Yoshimura And Kanamitsu, 2013) (Watanabe et al., 2012) Forcing \* Vertically Weighted Damping (Hong and Chang, 2012)

20CRv2c (Compo et al., 2011) 1831-2011 6hr / 2°x2°(91x180)

Observations (Prcp: GPCC, CPC- ] 0.5°x0.5° 1901-2010 3hr Unified; Tair: CRU; Rad.: SRB)

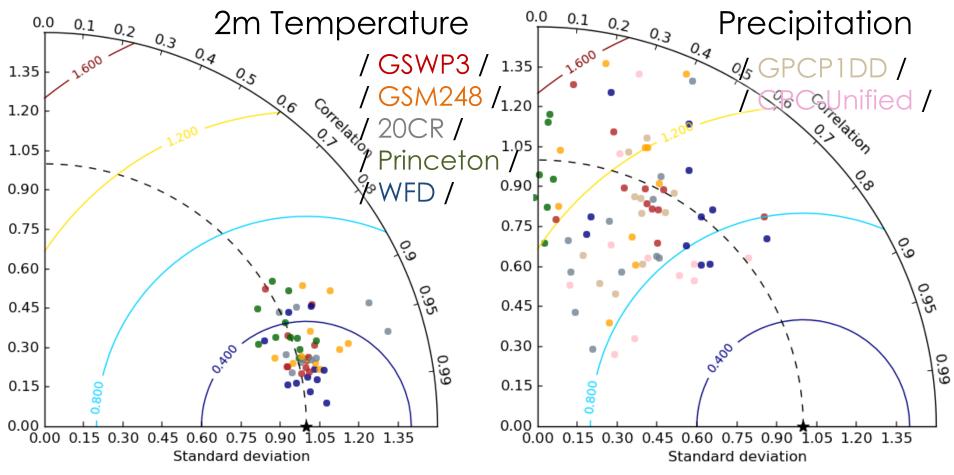

EXP1

DDS + Mean Corr. Tair (CRU)

GSWP3 (DDS T248)

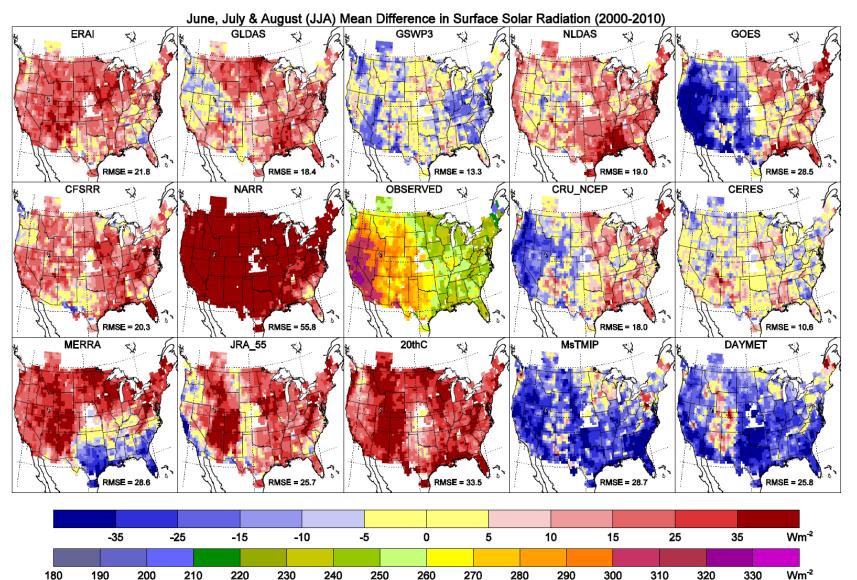
Better representation of mean and variability in highfrequency domain

Only Mean Corr. Tair (CRU)

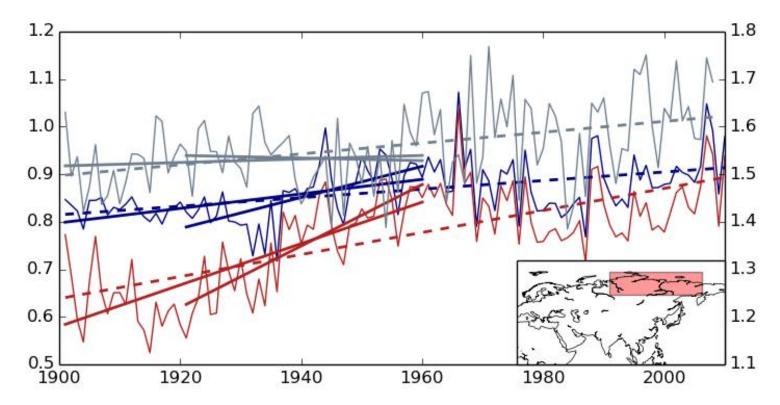



### Comparison Table for Existing Forcing Data



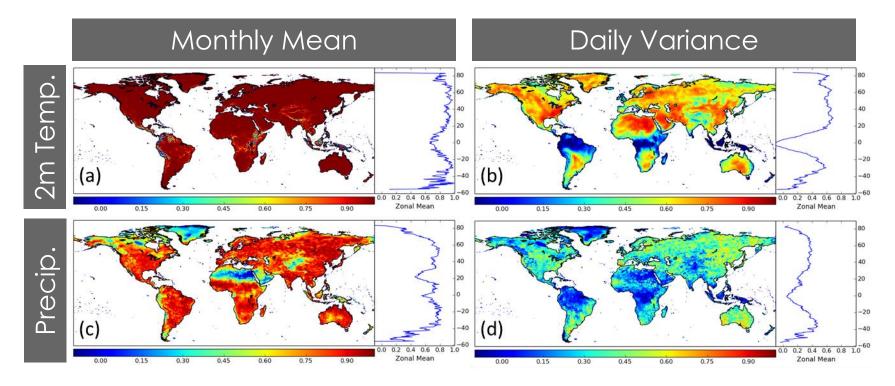

|                           | NCC                   | GSWP2                                | Princeton                      | ELSE                      | WATCH                          | GSWP3                                                |
|---------------------------|-----------------------|--------------------------------------|--------------------------------|---------------------------|--------------------------------|------------------------------------------------------|
| Reference                 |                       | Dirmeyer et<br>al., 2006             | Sheffield et<br>al., 2006      | Kim et al.,<br>2009       | Weedon et<br>al., 2011         | Kim et al., in prep.                                 |
| Temporal<br>Coverage      | 1948-2000<br>53 years | 1982-1995<br>14 years                | 1948-2008<br>61 years          | 1979-2010<br>32 years     | 1901-2001<br>101 years         | 1851-2011<br>161 years                               |
| Spa./Temp.<br>Resolution  | 1 deg.<br>6 hours     | 1 deg.<br>3 hours                    | 1 deg.<br>3 hours              | -                         | 0.5 deg.<br>3 or 6 hours       | 0.5 deg.<br>3 hours                                  |
| Base<br>Reanalysis        | 1948 - now            | NCEP/NCAR<br>1948 - now<br>T62 / 6hr | 1948 - now                     | 194 <mark>8 – n</mark> ow |                                | <b>20CRv2c</b><br><b>1851 - 2011</b><br>2 deg. / 6hr |
| Spa. Dis-<br>aggregation  |                       | Bi-linear                            | Bi-linear,<br>Bayesian         | Bi-linear                 | Bi-linear                      | Dynamical<br>Downscale                               |
| Temp. Dis-<br>aggregation | N/A                   |                                      | Variability<br>from Obs.       |                           | Variability<br>from Obs.       | Dynamical<br>Downscale                               |
| Bias<br>Correction        |                       | ,                                    | Only<br>monthly<br>(Add/Ratio) |                           | Only<br>monthly<br>(Add/Ratio) | Monthly<br>(Add/Ratio)<br>& Daily<br>(Non-para.)     |

+ Beta-version of Land Surface Forcing Data Ready




20<sup>th</sup> Century Reanalysis (Compo et al., 2011) is dynamically downscaled using GSM, and observational dataset is incorporated to reduce modeled fields.

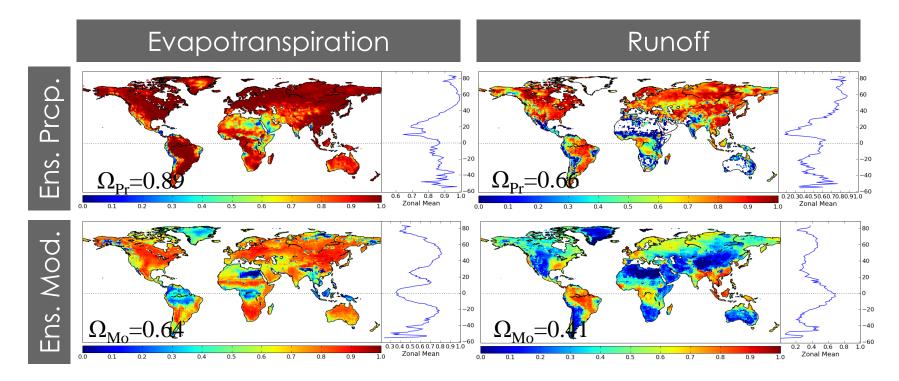
#### + Relatively small bias of solar radiation




+ Spurious(?) trend at high latitude in early 20<sup>th</sup> Century

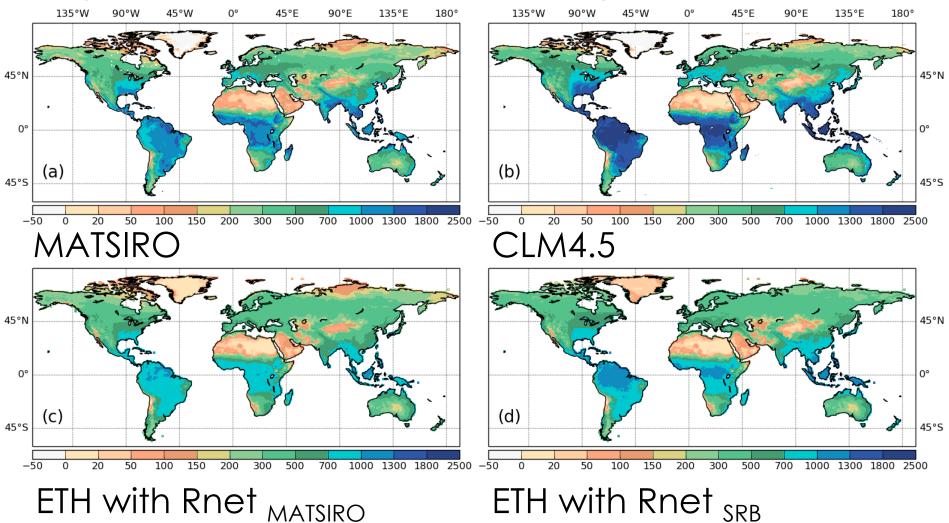


|      | Mean | 1920-1960 | 1901-1960 | 1901-2010 |
|------|------|-----------|-----------|-----------|
| 20CR | 1.56 | -0.0003   | 0.0004    | 0.0011    |
| GPCC | 0.77 | 0.0064    | 0.0044    | 0.0023    |
| CRU  | 0.86 | 0.0033    | 0.0015    | 0.0009    |


+ Map (uncertainty of) water resources over the 20th century (and beyond)



Global distribution of the similarity index ( $\Omega$ ) for 2001-2010 of monthly mean and variance calculated from different dataset.


Since sharing observations to correct monthly bias, higher similarities are found in monthly mean fields than daily variance.

+ Map (uncertainty of) water resources over the 20th century (and beyond)



Uncertainty in simulated evapotranspiration and runoff introduced by different land surface schemes in GSWP2 are larger than precipitation uncertainty-induced uncertainty by 28% and 40% in the similarity index ( $\Omega$ ) globally.

+ Significant discrepancy of spatial distributions found between models but no apparent changes or shifts in temporal variability (Here, Evapotranspiration in 20<sup>th</sup> Century)



#### 2016 International Land Model Benchmarking Workshop

#### Thank you

Connection to DECK (Diagnostic, Evaluation and Characterization of Klima) and other MIPs

Land-Hist (LMIP; off-line land only) + Baseline for C4MIP, LUMIP, & CMIP6-historical

Historical runs for 1900-2014 serve as reference runs

+ Forcing datasets joint with other projects (GSWP3, WFDEI, Princeton, CRU-NCEP: Links to GSWP3, ISI-MIP and Trendy projects)

# Future simulation to be selected from Scenario-MIP portfolio

#### Participants

ACCESS, BCC-CSM2-MR, CanESM, CESM, CMCC, CNRM-CM, EC-Earth, FGOALS, GFDL, GISS, IPSL-CM6, MIROC6-CGCM, MPI-ESM, MRI-ESM1.x, NorESM, UKESM

### Further Goals and Contributions of LS3MIP

#### Routine multi-model reanalysis:

Trend/variability on water resources & general hydrological quantities

#### Analysis toolkit:

Detections and attributions of climate change impacts on the trends

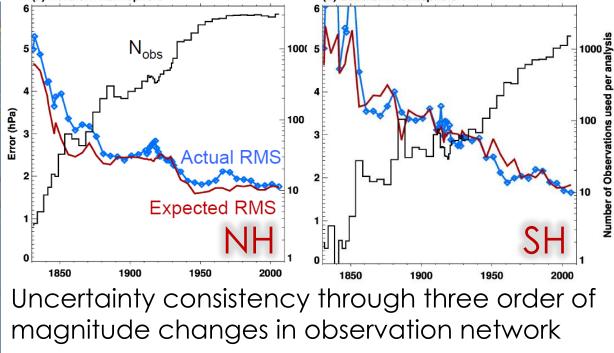
Of course, one of the expected challenges is the quantification of feedbacks from human activities, such as irrigation, to the future climate predictions by AOGCMs.

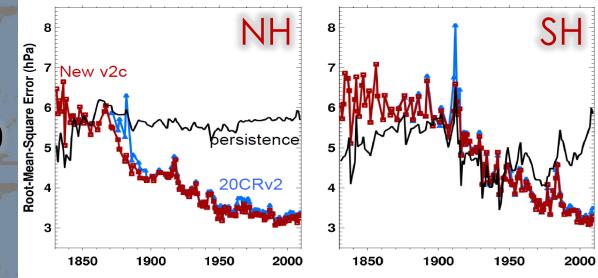
#### Scenario engine:

Future assessments based on full combinations of RCPs and SSPs, including anthropogenic interventions on water cycles

### LS3MIP Overview

#### LMIP


- + an evaluation of the land processes representation in CMIP6 DECK runs, revealing main systematic biases and their dependencies
- + an estimation of the long-term terrestrial energy/water/carbon cycles under observation constrained historical (land reanalysis) and future (impact assessment) conditions considering LUCC.


#### LFMIP

- + an assessment of the role of snow and soil moisture feedbacks in the regional response to altered climate forcings, focusing on controls of climate extremes, water availability and high-latitude climate
- + an assessment of the contribution of land surface processes to systematic Earth System model biases and the current and future predictability of regional temperature/precipitation patterns

|      | 00 | 01  | 02   | 03 | 04     | 05   | 06   | 07       | 08   | 09      | 10   | Forcing Data           |
|------|----|-----|------|----|--------|------|------|----------|------|---------|------|------------------------|
| 1830 | 1  |     |      |    |        |      |      |          |      |         |      | Update                 |
| 1840 |    |     |      |    |        |      | _    | _        |      |         |      | operano                |
| 1850 |    |     |      | 1  |        |      |      |          |      |         |      |                        |
| 1860 |    |     | 1    | 1  | 9/#    | VAN  |      |          | E E  | 300     | nd   | ary Conditions ~10TB   |
| 1870 |    |     |      |    | El E   | M ÉA | 14   |          |      |         |      |                        |
| 1880 |    |     | -    | 1  |        |      | CO.  | E        |      | JOV     | VIIS | scaled Data ~ 40TB     |
| 1890 |    | 1   | I B  | VE |        | 1/EP | 1000 | ineren ; |      | + 1     | 5%   | additional data        |
| 1900 | 1  | A A | 11 b |    | 11   b | 11 h |      |          | El a |         |      |                        |
| 1910 |    |     |      | EE |        |      |      |          |      | 400     | 00   | CPU Hours              |
| 1920 |    |     |      |    |        |      |      | £8]-]    | Et/  |         | 121  |                        |
| 1930 |    |     |      |    |        |      |      |          |      | / m     | on   | ths actual ETA         |
| 1940 |    |     |      |    |        |      |      |          | F    | TA      | at   | early-June             |
| 1950 |    |     |      |    |        |      |      |          |      | -   / \ | Gi   | Curry Joine            |
| 1960 |    |     |      |    |        |      |      |          | (    | Qui     | ck   | update up to 2012      |
| 1970 |    |     |      |    |        |      |      |          |      |         |      |                        |
| 1980 |    |     |      |    |        |      |      |          |      | 201     | 3 se | eems not so optimistic |
| 1990 |    |     |      |    |        |      |      |          | F    |         | sihl | y up to 2014?          |
| 2000 |    |     |      |    |        |      |      |          |      | 05.     |      | y UP 10 2014?          |
| 2010 |    |     |      |    |        |      |      |          |      |         |      | 2014, Be606, IIS       |

20<sup>th</sup> Century Reanalysis v2c 1950 1900 1850





24 hr forecast of 20CR beats in NH (comparable to in SH) persistence forecast using NRA