Evaluation and Improvement of Land Carbon Cycle Models: Theory and Techniques

Yiqi Luo University of Oklahoma, USA

of dr. YIOI LUC

ILAMB meeting, May 16-18, 2016

Contributors

- Ecolab: Zheng Shi, Jianyang Xia, Manoj MC, Junyi Liang, Lifen Jiang, Oleksandra Hararuk, Katherine Todd-Brown, Qianyu Li
- NIMBioS working group: Folashade Agusto, Benito Chen, Alan Hastings, Forrest Hoffman, Jiang Jiang, Belinda Medlyn, Shuli Niu, Martin Rasmussen, Matthew Smith, Ying Wang, Ying-Ping Wang
- Other collaborators: Anders Ahlström, Chris Lu, Christopher Schwalm, Sha Zhou

Two issues

 Why do land models behave so differently?

 How could big data be integrated into big models (BDBM challenges)?

New theory and techniques

- A theoretical framework of carbon storage X(t) = Xe(t) - Xp(t)
- High-fidelity emulators of carbon cycle models
 - Model evaluation via 3D parameter space, traceability framework, variance decomposition
 - Model improvement via semi-analytic spin-up and data assimilation
 - Model development via component evaluation

Recommendations

- *Tier 0* You do nothing, we will find ways to analyze your results
- **Tier 1** Model outputs: GPP, residence time (τ_E) to estimate the equilibrium capacity (X_E) and potential (X_p)
- *Tier 2* Developing an emulator for your model to enable analytic spin-up, traceability, parameter space, variance decomposition, and data assimilation
- *Tier 3* Establishing a library of emulators to allow various analyses

Challenge

What we have searched for

Fundamental properties of the terrestrial carbon cycle

- 1. Photosynthesis as the primary C influx pathway
- 2. Compartmentalization,
- 3. Partitioning among pools
- 4. Donor-pool dominated carbon transfers
- 5. 1st-order kinetics of carbon transfers

Luo and Weng 2011 TREE

Fundamental properties of the terrestrial carbon cycle

- 1. Photosynthesis as the primary C influx pathway
- 2. Compartmentalization,
- 3. Partitioning among pools
- 4. Donor-pool dominated carbon transfers?
- 5. 1st-order kinetics of carbon transfers?

Luo and Weng 2011 TREE

Fundamental properties of the terrestrial carbon cycle

- 1. Photosynthesis as the primary C influx pathway
- 2. Compartmentalization,
- 3. Partitioning among pools
- 4. Donor-pool dominated carbon transfers
- 5. 1st-order kinetics of carbon transfers

Luo and Weng 2011 TREE

A long history of using matrix equations

Bolin & Eriksson, 1958; Emanuel et al., 1981

Major issue

$$\frac{dX(t)}{dt} = AX(t)CX(t) + BU(t)$$
$$X(t = 0) = X_0$$

If the carbon cycle mathematically is an extremely simple system,

• Why is the natural phenomenon so complex?

Investigative Workshop

Jim Cushing: Nonautonomous system

Nonautonomous system

A dynamical system with its input and parameters being time dependent

$$\begin{cases} \frac{dX(t)}{dt} = AX(t)CX(t) + BU(t) \\ X(t=0) = X_0 \end{cases}$$

U(t) is input, which is time dependent

Parameters $\chi(t)$ and B(t) are time dependent

Working group

External vs. internal components of carbon cycle dynamics

X'(t) = AX(t)CX(t) + BU(t)

$$X(t) = (A\xi(t)K)^{-1}Bu(t) - (A\xi(t)K)^{-1}X'(t)$$

Instantaneous responses Internal capacity
to external forcing of equilibriation

Three advances

 $X(t) = (A\xi(t)K)^{-1}Bu(t) - (A\xi(t)K)^{-1}X'(t)$

Advance 1: Emulator

Input: GPP, temperature and precipitation

$$X(t) = (A\xi(t)K)^{-1}Bu(t) - (A\xi(t)K)^{-1}X'(t)$$

Exactly reproduce simulation output of original models

$$\begin{aligned} \frac{\partial C_i(z)}{\partial t} &= R_i(z) + \sum_{j \neq i} (1 - r_j) T_{ji} k_j(z) C_j(z) - k_i(z) C_i(z) \\ &+ \frac{\partial}{\partial z} \left(D(z) \frac{\partial C_i}{\partial z} \right) \end{aligned}$$

Emulator

$$X(t) = (A\xi(t)K)^{-1}Bu(t) -(A\xi(t)K)^{-1}X'(t)$$

Shi et al. in progress

A is a block diagonal transfer matrix with dimension 70 by 70 (7 C pools per soil layer for 10 layers).

A_L is a block matrix with L being the soil layers taking value from 1 to 10. $a_{i,j}$, is C transfer from i^{th} receiving pool from j^{th} donating pool

Shi et al. Unpublished

Reproducibility of the original models

Shi et al. Unpublished

Emulators

LPJ-GUESS

TECO

CLM 3.5, 4.0, 4.5

CABLE

100% reproducibility of the original models

Luo et al. under review

Advance 2: Nature of the terrestrial carbon cycle

Complex phenomena of carbon cycle dynamics result from multiple environmental forcing variables interacting with relatively simple internal carbon cycle processes Luo, Smith, and Keenan, 2015, GCB

Advance 3: The targeted quantity

- Carbon cycle research
- Government negotiation on carbon credicts
- Carbon trading

Transient
dynamics = Capacity - Potential
$$X(t) = t_E(t)NPP(t) - X_p(t)$$

Two applications

- Model evaluation
- Model improvement

Zhou et al. In prep.

Variance decomposition

$$X = X_E - X_p; X_E = \tau_E * NPP$$

$$\sigma_X^2 = \widehat{\sigma_{\tau_E}}^2 + \widehat{\sigma_{NPP}}^2 + 2\widehat{\sigma_{\tau_E,NPP}} + \sigma_{X_p}^2 - 2\sigma_{X_E,X_p}$$

A traceability framework for terrestrial C cycle

Model evaluations

- *Minimal level* Model outputs: GPP and residence time (τ_E) to estimate the equilibrium storage capacity (X_E) and the potential (X_p)
- Medium level Developing an emulator of your model to enable traceability analysis, parameter space, variance decomposition
- *Ideal level* Establishing a library of emulators of multiple models to allow various analyses

Application 2: Model improvement

Simple but pool-based models

Retrievals of NPP allocation to structural (wood and fine roots) and photosynthetic (labile and foliage) C pools.

A. Anthony Bloom et al. PNAS 2016;113:1285-1290

Community Land Model (CLM)

Lawrence et al. 2010

Carbon Cycle Data Assimilation System (CCDAS)

Flux data alone can not constrain turnover rates

When turnover rates are unconstrained, the models have low predictive skills.

Both pool- and fluxbased data are needed to constrain global land models to improve their predictive skills.

Earth system modeling

Computational cost

BDBM challenges

Issue	Challenge	Innovation
Model complexity	Low tractability	
Global optimization	Computational cost	
Numerous parameters	Equifinality	
Heterogeneous datasets	Interoperatbility	

 $X(t) = (A\xi(t)K)^{-1}Bu(t) - (A\xi(t)K)^{-1}X'(t)$

Our approaches to BDBM challenges

Issue	Challenge	Innovation
Model complexity	Low tractability	Traceability
Global optimization	Computational cost	High-fidelity emulator
Numerous parameters	Equifinality	Many datasets
Heterogeneous datasets	Interoperatbility	Various data assimilation strategies

 $X(t) = (A\xi(t)K)^{-1}Bu(t) - (A\xi(t)K)^{-1}X'(t)$

Improvement of soil C modeling

RESIDUALS DECREASED, SPATIAL REPRESENTATION IMPROVED

HARARUK ET AL., 2014, JGR

Age-dependent forest carbon sink

Zhou et al. 2015 JGR-Biogeosciences

Summary

- A theoretical framework of carbon storage X(t) = Xe(t) - Xp(t)
- High-fidelity emulators of carbon cycle models
 - Model evaluation via 3D parameter space, traceability framework, variance decomposition
 - Model improvement via semi-analytic spin-up and data assimilation
 - Model development via component evaluation

Recommendations

- **Tier 1** Model outputs: GPP, τ_E , X_E , X_p to allow analytic model evaluation
- Tier 2 Developing an emulator for your model to enable analytic spin-up, traceability, parameter space, variance decomposition, and data assimilation
- *Tier 3* Establishing a library (farm, zoo) of emulators to allow various analyses

Matrix equation

$$X(t) = X_E(t) - X_p(t)$$

$$X(t) = t_E(t)NPP(t) - X_p(t)$$

$$X(t) = (A\xi(t)K)^{-1}Bu(t) - (A\xi(t)K)^{-1}X'(t)$$

The traceability framework

Lu et al. *In prep.* Zhou et al. *In prep.*