

ACME Overview and ILAMB

W.J. Riley

Earth and Environmental Sciences Lawrence Berkeley National Laboratory

- ACME is a modeling project launched by DOE in July 2014 to develop a branch of the CESM to:
 - Advance a set of science questions that demand major computational power and advanced software
 - Provide high resolution coupled climate simulations (15-25 km), with variable resolution grids < 10km
 - Focus on near-term time horizon: 1970-2050
 - Design codes to effectively utilize next and successive generations DOE Leadership Class computers, both hybrid and multi-core, through exascale
- The project was based on a consolidation of previous DOE Laboratory model development projects, and includes 8 DOE Laboratories and 6 non-Laboratory institutions; over 100 people.
- The project is initially supported for 3 years and is structured around
 - Three science drivers and questions
 - Experiments to answer questions
 - New developments

Climate Science Drivers and Questions

- Water cycle: How do the hydrological cycle and water resources interact with the climate system on local to global scales?
 - What are the processes and factors governing precipitation and the water cycle today and how will precipitation evolve over the next 40 years?
- Biogeochemistry: How do biogeochemical cycles interact with global climate change?
 - What are the contributions and feedbacks from natural and managed systems to current greenhouse gas fluxes, and how will those factors and associated fluxes evolve in the future?
- Cryosphere-Ocean: How do rapid changes in cryospheric systems interact with the climate system?
 - What is the long-term, committed Antarctic ice sheet contribution to sea level rise from climate change during 1970-2050?

New ALM Algorithms Require More Rigorous Testing

- Coupled C, N, and P cycles
 - Explicit leaf level controls on photosynthesis (Ghimire et al. 2016)
 - Multiple representations of nutrient competition (e.g., ECA (Tang and Riley 2013; Zhu et al. 2016), RD (Yang et al. 2014))
 - Dynamic allocation
- Dynamic vegetation with ED (Fisher et al. 2015)
- Vertically-resolved multi-phase, multi-tracer reactive transport (Tang et al. 2013; Tang and Riley submitted)
- Soil hydrology

ILAMB ALM Evaluation

- How should we evaluate and benchmark these much more complex models?
 - Traditional large-scale and temporal states and fluxes (e.g., LAI)
 - Site-level comparisons (e.g., Fluxnet)
 - Functional "emergent" responses (e.g., NPP vs. precipitation)
 - Functional "unit" responses
 - Manipulative experiments (e.g., FACE, nutrient addition, hydrological and temperature manipulations)
- Distinguish emergent responses from unit responses
 - Forces modular design and benchmarking
- ACME is contributing to these benchmarks

Manipulative Experiment Evaluation

Comparison with Meta-Analyses

Comparison with Individual Experiments

(Bouskill et al. 2014, Biogeosciences)

ILAMB is a Critical Component of ALM Evaluation

- Rapid model evaluation during development (Ghimire et al. 2016)
- Individual component evaluation
- Clear temporal record of model fidelity
- Facilitates comparison with other models

0 0.25 0.5 0.75 1 Variable Score

NCYCL2000

Accelerated Climate Modeling for Energy