Mean State

Download Data
Period Mean (original grids) [degC]
Bias [degC]
RMSE [degC]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 24.8
ACCESS-ESM1-5 [-] 27.9 3.14 3.64 0.00 0.104 0.439 1.00 0.495
BCC-CSM2-MR [-] 27.2 2.43 2.56 0.00 0.157 0.556 1.00 0.567
BGCLND [-] 25.7 0.887 1.42 0.508 0.549 0.601 0.966 0.679
BGCLNDATM_progCO2 [-] 25.1 0.264 0.882 0.00 0.628 0.675 1.00 0.744
CanESM5 [-] 27.9 3.09 3.42 0.508 0.0937 0.478 0.966 0.504
CNRM-ESM2-1 [-] 26.6 1.79 2.08 0.00 0.265 0.585 1.00 0.609
EC-Earth3-CC [-] 25.5 0.688 1.62 0.508 0.586 0.359 0.966 0.568
MeanCMIP6 [-] 27.0 2.23 2.55 0.508 0.182 0.512 0.966 0.543
MIROC-ES2L [-] 26.9 2.10 2.50 2.51 0.204 0.461 0.631 0.439
MPI-ESM1-2-LR [-] 26.7 1.91 2.37 1.02 0.230 0.474 0.933 0.528
MRI-ESM2-0 [-] 27.2 2.44 2.66 1.02 0.154 0.564 0.933 0.553
NorESM2-LM [-] 26.8 2.05 2.37 1.02 0.212 0.535 0.933 0.554
UKESM1-0-LL [-] 27.2 2.43 2.80 0.00 0.163 0.567 1.00 0.574
Download Data
Period Mean (original grids) [degC]
Bias [degC]
RMSE [degC]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 25.3
ACCESS-ESM1-5 [-] 28.6 3.24 3.40 0.00 0.00851 0.285 1.00 0.395
BCC-CSM2-MR [-] 27.5 2.21 2.37 1.02 0.0385 0.390 0.933 0.438
BGCLND [-] 25.9 0.538 0.856 0.00 0.453 0.409 1.00 0.568
BGCLNDATM_progCO2 [-] 25.6 0.290 0.650 1.02 0.653 0.458 0.933 0.625
CanESM5 [-] 26.7 1.35 1.51 0.00 0.136 0.410 1.00 0.489
CNRM-ESM2-1 [-] 24.4 -0.914 0.983 0.00 0.260 0.374 1.00 0.502
EC-Earth3-CC [-] 24.9 -0.475 0.979 1.02 0.497 0.316 0.933 0.515
MeanCMIP6 [-] 26.7 1.35 1.51 1.02 0.138 0.453 0.933 0.494
MIROC-ES2L [-] 25.5 0.210 1.35 1.02 0.734 0.148 0.933 0.491
MPI-ESM1-2-LR [-] 25.5 0.138 0.759 0.00 0.816 0.317 1.00 0.613
MRI-ESM2-0 [-] 27.1 1.81 2.06 1.02 0.0701 0.372 0.933 0.437
NorESM2-LM [-] 27.6 2.25 2.32 0.00 0.0362 0.319 1.00 0.419
UKESM1-0-LL [-] 27.2 1.86 2.14 0.00 0.0648 0.336 1.00 0.434
Download Data
Period Mean (original grids) [degC]
Bias [degC]
RMSE [degC]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 10.4
ACCESS-ESM1-5 [-] 12.0 1.64 3.87 0.372 0.713 0.667 0.973 0.755
BCC-CSM2-MR [-] 10.2 -0.205 3.71 0.430 0.770 0.645 0.961 0.755
BGCLND [-] 9.97 -0.437 3.13 0.223 0.808 0.695 0.985 0.796
BGCLNDATM_progCO2 [-] 10.9 0.487 3.31 0.356 0.804 0.684 0.976 0.787
CanESM5 [-] 11.1 0.758 3.89 0.468 0.750 0.644 0.962 0.750
CNRM-ESM2-1 [-] 10.6 0.247 3.43 0.467 0.762 0.675 0.967 0.770
EC-Earth3-CC [-] 10.6 0.185 3.28 0.530 0.817 0.659 0.961 0.774
MeanCMIP6 [-] 7.55 -2.83 4.77 0.271 0.606 0.664 0.973 0.727
MIROC-ES2L [-] 12.3 1.90 4.02 0.325 0.725 0.657 0.969 0.752
MPI-ESM1-2-LR [-] 10.7 0.300 3.61 0.417 0.774 0.648 0.966 0.759
MRI-ESM2-0 [-] 11.3 0.957 3.34 0.362 0.778 0.676 0.970 0.775
NorESM2-LM [-] 12.1 1.69 3.86 0.629 0.731 0.660 0.957 0.752
UKESM1-0-LL [-] 9.72 -0.666 3.98 0.478 0.760 0.630 0.958 0.744
Download Data
Period Mean (original grids) [degC]
Bias [degC]
RMSE [degC]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 2.65
ACCESS-ESM1-5 [-] 3.32 0.672 3.91 0.341 0.834 0.691 0.973 0.797
BCC-CSM2-MR [-] 1.39 -1.26 4.42 0.324 0.839 0.643 0.978 0.776
BGCLND [-] 1.08 -1.33 4.00 0.0422 0.853 0.678 0.997 0.801
BGCLNDATM_progCO2 [-] 3.22 0.807 3.86 0.169 0.868 0.700 0.989 0.814
CanESM5 [-] 2.49 -0.157 3.96 0.0810 0.843 0.681 0.995 0.800
CNRM-ESM2-1 [-] 3.56 0.909 4.11 0.101 0.814 0.684 0.993 0.794
EC-Earth3-CC [-] 2.54 -0.109 3.56 0.142 0.890 0.694 0.990 0.817
MeanCMIP6 [-] -1.69 -4.34 5.86 0.0405 0.648 0.653 0.997 0.738
MIROC-ES2L [-] 3.16 0.510 4.01 0.0608 0.870 0.669 0.996 0.801
MPI-ESM1-2-LR [-] 2.68 0.0245 3.95 0.161 0.880 0.669 0.989 0.802
MRI-ESM2-0 [-] 3.91 1.26 3.89 0.0810 0.844 0.697 0.995 0.808
NorESM2-LM [-] 3.26 0.605 4.08 0.485 0.857 0.675 0.967 0.794
UKESM1-0-LL [-] 0.774 -1.88 4.56 0.182 0.821 0.641 0.988 0.772
Download Data
Period Mean (original grids) [degC]
Bias [degC]
RMSE [degC]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 25.8
ACCESS-ESM1-5 [-] 29.6 3.88 4.59 0.00 0.0157 0.0979 1.00 0.303
BCC-CSM2-MR [-] 27.9 2.10 2.54 0.678 0.106 0.282 0.955 0.406
BGCLND [-] 25.7 -0.0342 0.743 0.00 0.898 0.386 1.00 0.667
BGCLNDATM_progCO2 [-] 25.0 -0.780 1.01 0.678 0.442 0.419 0.955 0.559
CanESM5 [-] 31.0 5.24 5.92 0.00 0.0400 0.0796 1.00 0.300
CNRM-ESM2-1 [-] 25.6 -0.141 1.29 0.00 0.850 0.194 1.00 0.559
EC-Earth3-CC [-] 28.3 2.51 3.26 0.00 0.157 0.136 1.00 0.357
MeanCMIP6 [-] 27.1 1.35 1.67 0.339 0.227 0.363 0.978 0.483
MIROC-ES2L [-] 25.7 -0.0807 1.62 1.36 0.502 0.189 0.833 0.428
MPI-ESM1-2-LR [-] 27.4 1.67 3.10 0.678 0.143 0.0690 0.955 0.309
MRI-ESM2-0 [-] 27.0 1.20 1.89 0.00 0.216 0.214 1.00 0.411
NorESM2-LM [-] 26.9 1.18 1.52 0.339 0.221 0.326 0.978 0.463
UKESM1-0-LL [-] 28.3 2.50 3.09 0.00 0.0453 0.199 1.00 0.361
Download Data
Period Mean (original grids) [degC]
Bias [degC]
RMSE [degC]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 8.01
ACCESS-ESM1-5 [-] 9.96 1.95 4.07 0.358 0.755 0.702 0.974 0.783
BCC-CSM2-MR [-] 7.67 -0.340 3.87 0.274 0.824 0.665 0.982 0.784
BGCLND [-] 7.52 -0.481 3.35 0.164 0.835 0.717 0.989 0.814
BGCLNDATM_progCO2 [-] 8.66 0.658 3.53 0.335 0.840 0.705 0.977 0.807
CanESM5 [-] 8.83 0.822 3.98 0.401 0.803 0.679 0.973 0.783
CNRM-ESM2-1 [-] 8.48 0.471 3.53 0.415 0.794 0.708 0.972 0.795
EC-Earth3-CC [-] 8.12 0.113 3.38 0.548 0.860 0.693 0.963 0.802
MeanCMIP6 [-] 4.33 -3.68 5.15 0.141 0.629 0.680 0.991 0.745
MIROC-ES2L [-] 10.1 2.04 4.29 0.155 0.757 0.689 0.990 0.781
MPI-ESM1-2-LR [-] 8.32 0.313 3.78 0.309 0.808 0.688 0.979 0.791
MRI-ESM2-0 [-] 8.95 0.944 3.43 0.336 0.827 0.713 0.970 0.806
NorESM2-LM [-] 9.96 1.95 4.07 0.618 0.776 0.689 0.958 0.778
UKESM1-0-LL [-] 7.32 -0.695 4.27 0.380 0.806 0.642 0.974 0.766

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

All Models

Benchmark
Data not available
Data not available
ACCESS-ESM1-5
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
BGCLND
Data not available
Data not available
BGCLNDATM_progCO2
Data not available
Data not available
CanESM5
Data not available
Data not available
CNRM-ESM2-1
Data not available
Data not available
EC-Earth3-CC
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ES2L
Data not available
Data not available
MPI-ESM1-2-LR
Data not available
Data not available
MRI-ESM2-0
Data not available
Data not available
NorESM2-LM
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FluxNet Tower eddy covariance measurements (Tier 1)

  Version:
2015

  Institutions:
FluxNet, AmeriFlux, AfriFlux, AsiaFlux, ChinaFlux, Fluxnet-Canada, KoFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, GreenGrass, OzFlux-TERN, LBA, NECC, ICOS, TCOS-Siberia, and USCCC

  References:
Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T. Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert (2007), Determinants of terrestrialecosystem carbon balance inferred from European eddy covarianceflux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880

Lasslop, G., M. Reichstein, D. Papale, A.D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biology, 16, 187-208, doi:10.1111/j.1365-2486.2009.02041.x

Knauer, J., S. Zaehle, B.E. Medlyn, M. Reichstein, C.A. Williams, M. Migliavacca, M.G. De Kauwe, C. Werner, C. Keitel, P. Kolari, J.-M. Limousin, and M.-L. Linderson (2018), Towards physiologically meaningful water use efficiency estimates from eddy covariance data, Global Change Biology, 24(2), 694-710, doi:10.1111/gcb.13893

  Comment:
Fluxnet variable(s) used: TA_F