Mean State

Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 152.
BCC-CSM2-MR [-] 199. 47.9 53.9 0.492 0.211 0.453 0.968 0.521
BGCv2LND.GSW [-] 199. 47.7 53.3 0.492 0.211 0.454 0.968 0.522
BGCv2LNDATM [-] 193. 41.1 49.3 0.00 0.287 0.492 1.00 0.568
CanESM5 [-] 219. 67.9 70.8 0.983 0.110 0.373 0.937 0.448
GFDL-ESM4 [-] 201. 49.5 60.4 3.01 0.202 0.371 0.504 0.362
MeanCMIP6 [-] 212. 60.6 63.6 0.983 0.138 0.491 0.937 0.514
MIROC-ES2L [-] 225. 73.1 76.8 0.983 0.0918 0.411 0.882 0.449
UKESM1-0-LL [-] 224. 72.0 76.6 3.02 0.0986 0.367 0.502 0.334
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 198.
BCC-CSM2-MR [-] 222. 24.0 32.7 2.00 0.260 0.247 0.756 0.378
BGCv2LND.GSW [-] 197. -1.35 14.2 0.00 0.927 0.453 1.00 0.708
BGCv2LNDATM [-] 202. 4.25 31.2 1.02 0.788 0.183 0.933 0.522
CanESM5 [-] 192. -6.37 24.0 1.02 0.700 0.269 0.933 0.543
GFDL-ESM4 [-] 202. 4.37 33.7 1.02 0.782 0.150 0.933 0.504
MeanCMIP6 [-] 203. 5.19 21.0 1.02 0.747 0.313 0.933 0.576
MIROC-ES2L [-] 205. 6.87 36.2 1.02 0.680 0.133 0.933 0.470
UKESM1-0-LL [-] 205. 7.28 21.9 1.02 0.665 0.306 0.933 0.552
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 167.
BCC-CSM2-MR [-] 166. -1.11 33.0 0.603 0.843 0.648 0.951 0.772
BGCv2LND.GSW [-] 167. -0.638 22.5 0.388 0.879 0.746 0.970 0.835
BGCv2LNDATM [-] 168. 0.327 30.7 0.433 0.849 0.663 0.969 0.786
CanESM5 [-] 179. 11.6 30.7 0.464 0.822 0.683 0.964 0.788
GFDL-ESM4 [-] 166. -0.888 27.8 0.479 0.862 0.696 0.961 0.804
MeanCMIP6 [-] 173. 5.74 23.6 0.424 0.870 0.739 0.967 0.829
MIROC-ES2L [-] 174. 6.14 29.0 0.524 0.856 0.681 0.957 0.794
UKESM1-0-LL [-] 179. 11.9 30.9 0.429 0.805 0.687 0.964 0.786
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 116.
BCC-CSM2-MR [-] 110. -6.19 29.4 0.598 0.909 0.711 0.960 0.823
BGCv2LND.GSW [-] 116. -0.257 20.0 0.187 0.924 0.797 0.988 0.877
BGCv2LNDATM [-] 109. -7.52 29.6 0.311 0.896 0.715 0.979 0.826
CanESM5 [-] 122. 5.26 25.2 0.159 0.916 0.746 0.989 0.849
GFDL-ESM4 [-] 115. -1.35 23.8 0.199 0.946 0.754 0.987 0.860
MeanCMIP6 [-] 120. 3.27 20.2 0.199 0.923 0.795 0.987 0.875
MIROC-ES2L [-] 121. 4.52 24.0 0.458 0.914 0.760 0.970 0.851
UKESM1-0-LL [-] 126. 9.14 26.6 0.0997 0.874 0.746 0.993 0.839
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 195.
BCC-CSM2-MR [-] 255. 60.9 69.4 0.339 0.196 0.407 0.978 0.497
BGCv2LND.GSW [-] 212. 17.9 29.5 0.339 0.601 0.506 0.978 0.648
BGCv2LNDATM [-] 203. 8.67 34.9 0.339 0.675 0.393 0.978 0.610
CanESM5 [-] 251. 56.8 68.7 0.678 0.216 0.365 0.955 0.475
GFDL-ESM4 [-] 239. 44.2 54.1 0.339 0.286 0.402 0.978 0.517
MeanCMIP6 [-] 239. 44.4 51.8 0.00 0.278 0.483 1.00 0.561
MIROC-ES2L [-] 201. 6.88 32.5 1.36 0.738 0.416 0.871 0.610
UKESM1-0-LL [-] 244. 49.7 60.6 0.339 0.238 0.393 0.978 0.500
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 157.
BCC-CSM2-MR [-] 151. -6.09 30.8 0.546 0.892 0.688 0.964 0.808
BGCv2LND.GSW [-] 155. -2.20 20.7 0.421 0.910 0.786 0.969 0.863
BGCv2LNDATM [-] 155. -2.99 29.0 0.421 0.898 0.699 0.972 0.817
CanESM5 [-] 166. 9.26 28.4 0.422 0.864 0.726 0.970 0.822
GFDL-ESM4 [-] 152. -5.06 25.6 0.394 0.902 0.738 0.973 0.838
MeanCMIP6 [-] 161. 3.77 21.6 0.415 0.906 0.778 0.970 0.858
MIROC-ES2L [-] 162. 4.52 26.7 0.512 0.884 0.730 0.964 0.827
UKESM1-0-LL [-] 167. 9.97 29.4 0.304 0.847 0.721 0.978 0.817

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

All Models

Benchmark
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
BGCv2LND.GSW
Data not available
Data not available
BGCv2LNDATM
Data not available
Data not available
CanESM5
Data not available
Data not available
GFDL-ESM4
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ES2L
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FluxNet Tower eddy covariance measurements (Tier 1)

  Version:
2015

  Institutions:
FluxNet, AmeriFlux, AfriFlux, AsiaFlux, ChinaFlux, Fluxnet-Canada, KoFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, GreenGrass, OzFlux-TERN, LBA, NECC, ICOS, TCOS-Siberia, and USCCC

  References:
Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T. Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert (2007), Determinants of terrestrialecosystem carbon balance inferred from European eddy covarianceflux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880

Lasslop, G., M. Reichstein, D. Papale, A.D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biology, 16, 187-208, doi:10.1111/j.1365-2486.2009.02041.x

Knauer, J., S. Zaehle, B.E. Medlyn, M. Reichstein, C.A. Williams, M. Migliavacca, M.G. De Kauwe, C. Werner, C. Keitel, P. Kolari, J.-M. Limousin, and M.-L. Linderson (2018), Towards physiologically meaningful water use efficiency estimates from eddy covariance data, Global Change Biology, 24(2), 694-710, doi:10.1111/gcb.13893

  Comment:
Fluxnet variable(s) used: SW_IN_F