Mean State

Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 152.
ACCESS-ESM1-5 [-] 235. 83.7 90.2 0.492 0.0651 0.390 0.968 0.453
BCC-CSM2-MR [-] 199. 47.0 49.6 0.983 0.218 0.421 0.937 0.499
BGCLND [-] 199. 47.7 53.3 0.492 0.211 0.454 0.968 0.522
BGCLNDATM_progCO2 [-] 193. 41.1 49.3 0.00 0.287 0.492 1.00 0.568
CanESM5 [-] 220. 68.3 73.4 0.983 0.108 0.411 0.937 0.467
CNRM-ESM2-1 [-] 210. 58.3 63.6 0.492 0.149 0.443 0.968 0.501
EC-Earth3-CC [-] 202. 50.8 55.0 0.00 0.221 0.512 1.00 0.561
MeanCMIP6 [-] 212. 60.6 63.6 0.983 0.138 0.491 0.937 0.514
MIROC-ES2L [-] 224. 72.4 77.9 0.492 0.0940 0.440 0.968 0.486
MPI-ESM1-2-LR [-] 231. 79.5 82.0 0.492 0.0744 0.487 0.968 0.504
MRI-ESM2-0 [-] 232. 80.8 83.6 0.492 0.0728 0.408 0.968 0.464
NorESM2-LM [-] 200. 48.4 54.3 0.492 0.210 0.495 0.968 0.542
UKESM1-0-LL [-] 223. 71.6 79.6 3.02 0.0996 0.343 0.502 0.322
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 198.
ACCESS-ESM1-5 [-] 224. 25.8 31.9 1.02 0.235 0.346 0.933 0.465
BCC-CSM2-MR [-] 222. 23.8 33.7 1.02 0.263 0.244 0.933 0.421
BGCLND [-] 197. -1.35 14.2 0.00 0.927 0.453 1.00 0.708
BGCLNDATM_progCO2 [-] 202. 4.25 31.2 1.02 0.788 0.183 0.933 0.522
CanESM5 [-] 194. -3.91 22.8 1.02 0.803 0.291 0.933 0.579
CNRM-ESM2-1 [-] 185. -12.8 23.9 1.02 0.488 0.302 0.933 0.506
EC-Earth3-CC [-] 211. 12.9 22.6 0.00 0.486 0.347 1.00 0.545
MeanCMIP6 [-] 203. 5.19 21.0 1.02 0.747 0.313 0.933 0.576
MIROC-ES2L [-] 201. 3.38 38.2 1.02 0.828 0.120 0.933 0.500
MPI-ESM1-2-LR [-] 230. 32.3 42.2 0.00 0.163 0.221 1.00 0.401
MRI-ESM2-0 [-] 209. 11.1 31.6 1.02 0.536 0.201 0.933 0.468
NorESM2-LM [-] 208. 10.2 25.7 1.02 0.565 0.254 0.933 0.502
UKESM1-0-LL [-] 205. 6.83 25.7 1.02 0.682 0.258 0.933 0.532
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 167.
ACCESS-ESM1-5 [-] 178. 11.1 34.8 0.429 0.785 0.660 0.968 0.768
BCC-CSM2-MR [-] 167. 0.0632 33.3 0.539 0.848 0.645 0.961 0.775
BGCLND [-] 167. -0.638 22.5 0.388 0.879 0.746 0.970 0.835
BGCLNDATM_progCO2 [-] 168. 0.327 30.7 0.433 0.849 0.663 0.969 0.786
CanESM5 [-] 179. 12.1 31.5 0.474 0.819 0.675 0.964 0.783
CNRM-ESM2-1 [-] 179. 11.6 30.9 0.519 0.794 0.693 0.957 0.784
EC-Earth3-CC [-] 175. 7.40 27.7 0.584 0.853 0.700 0.947 0.800
MeanCMIP6 [-] 173. 5.74 23.6 0.424 0.870 0.739 0.967 0.829
MIROC-ES2L [-] 173. 5.86 28.5 0.489 0.856 0.688 0.960 0.798
MPI-ESM1-2-LR [-] 171. 3.61 31.6 0.439 0.828 0.665 0.966 0.781
MRI-ESM2-0 [-] 183. 15.3 32.7 0.499 0.771 0.686 0.961 0.776
NorESM2-LM [-] 175. 7.17 30.9 0.504 0.833 0.675 0.959 0.785
UKESM1-0-LL [-] 179. 11.8 30.3 0.519 0.808 0.689 0.960 0.786
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 116.
ACCESS-ESM1-5 [-] 123. 6.60 29.7 0.140 0.888 0.715 0.991 0.827
BCC-CSM2-MR [-] 112. -4.72 30.7 0.558 0.919 0.699 0.963 0.820
BGCLND [-] 116. -0.257 20.0 0.187 0.924 0.797 0.988 0.877
BGCLNDATM_progCO2 [-] 109. -7.52 29.6 0.311 0.896 0.715 0.979 0.826
CanESM5 [-] 123. 6.72 26.6 0.159 0.904 0.737 0.989 0.842
CNRM-ESM2-1 [-] 136. 19.9 31.1 0.199 0.781 0.752 0.987 0.818
EC-Earth3-CC [-] 123. 7.03 24.8 0.498 0.909 0.753 0.956 0.843
MeanCMIP6 [-] 120. 3.27 20.2 0.199 0.923 0.795 0.987 0.875
MIROC-ES2L [-] 121. 4.16 25.0 0.359 0.907 0.753 0.976 0.847
MPI-ESM1-2-LR [-] 114. -2.20 28.0 0.219 0.892 0.728 0.985 0.834
MRI-ESM2-0 [-] 129. 12.9 28.9 0.219 0.851 0.739 0.985 0.829
NorESM2-LM [-] 113. -3.21 27.8 0.319 0.910 0.727 0.979 0.836
UKESM1-0-LL [-] 125. 8.77 26.2 0.299 0.878 0.745 0.980 0.837
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 195.
ACCESS-ESM1-5 [-] 263. 68.8 75.2 0.339 0.155 0.448 0.978 0.507
BCC-CSM2-MR [-] 256. 61.9 69.9 0.339 0.190 0.429 0.978 0.506
BGCLND [-] 212. 17.9 29.5 0.339 0.601 0.506 0.978 0.648
BGCLNDATM_progCO2 [-] 203. 8.67 34.9 0.339 0.675 0.393 0.978 0.610
CanESM5 [-] 254. 59.7 69.7 0.678 0.203 0.373 0.955 0.476
CNRM-ESM2-1 [-] 213. 18.3 38.5 0.339 0.594 0.376 0.978 0.581
EC-Earth3-CC [-] 236. 41.8 52.7 0.339 0.298 0.369 0.978 0.504
MeanCMIP6 [-] 239. 44.4 51.8 0.00 0.278 0.483 1.00 0.561
MIROC-ES2L [-] 202. 6.99 32.5 1.36 0.737 0.418 0.871 0.611
MPI-ESM1-2-LR [-] 238. 43.9 56.4 0.339 0.291 0.350 0.978 0.492
MRI-ESM2-0 [-] 231. 36.8 49.3 0.678 0.345 0.423 0.955 0.537
NorESM2-LM [-] 227. 32.8 42.2 0.339 0.391 0.450 0.978 0.567
UKESM1-0-LL [-] 245. 50.1 61.5 0.339 0.235 0.372 0.978 0.489
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 157.
ACCESS-ESM1-5 [-] 164. 6.73 32.5 0.318 0.842 0.696 0.979 0.803
BCC-CSM2-MR [-] 152. -4.72 31.2 0.498 0.901 0.682 0.967 0.808
BGCLND [-] 155. -2.20 20.7 0.421 0.910 0.786 0.969 0.863
BGCLNDATM_progCO2 [-] 155. -2.99 29.0 0.421 0.898 0.699 0.972 0.817
CanESM5 [-] 167. 9.83 28.8 0.429 0.861 0.721 0.971 0.818
CNRM-ESM2-1 [-] 169. 11.5 30.0 0.498 0.815 0.734 0.962 0.811
EC-Earth3-CC [-] 162. 4.96 25.5 0.616 0.895 0.740 0.943 0.830
MeanCMIP6 [-] 161. 3.77 21.6 0.415 0.906 0.778 0.970 0.858
MIROC-ES2L [-] 161. 4.23 26.4 0.408 0.884 0.732 0.971 0.830
MPI-ESM1-2-LR [-] 156. -0.982 27.8 0.346 0.884 0.715 0.977 0.823
MRI-ESM2-0 [-] 169. 11.5 29.5 0.380 0.830 0.730 0.974 0.816
NorESM2-LM [-] 164. 7.27 28.8 0.470 0.868 0.720 0.966 0.818
UKESM1-0-LL [-] 167. 9.50 28.6 0.408 0.854 0.724 0.973 0.819

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

All Models

Benchmark
Data not available
Data not available
ACCESS-ESM1-5
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
BGCLND
Data not available
Data not available
BGCLNDATM_progCO2
Data not available
Data not available
CanESM5
Data not available
Data not available
CNRM-ESM2-1
Data not available
Data not available
EC-Earth3-CC
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ES2L
Data not available
Data not available
MPI-ESM1-2-LR
Data not available
Data not available
MRI-ESM2-0
Data not available
Data not available
NorESM2-LM
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FluxNet Tower eddy covariance measurements (Tier 1)

  Version:
2015

  Institutions:
FluxNet, AmeriFlux, AfriFlux, AsiaFlux, ChinaFlux, Fluxnet-Canada, KoFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, GreenGrass, OzFlux-TERN, LBA, NECC, ICOS, TCOS-Siberia, and USCCC

  References:
Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T. Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert (2007), Determinants of terrestrialecosystem carbon balance inferred from European eddy covarianceflux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880

Lasslop, G., M. Reichstein, D. Papale, A.D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biology, 16, 187-208, doi:10.1111/j.1365-2486.2009.02041.x

Knauer, J., S. Zaehle, B.E. Medlyn, M. Reichstein, C.A. Williams, M. Migliavacca, M.G. De Kauwe, C. Werner, C. Keitel, P. Kolari, J.-M. Limousin, and M.-L. Linderson (2018), Towards physiologically meaningful water use efficiency estimates from eddy covariance data, Global Change Biology, 24(2), 694-710, doi:10.1111/gcb.13893

  Comment:
Fluxnet variable(s) used: SW_IN_F