Mean State

Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 44.5
ACCESS-ESM1-5 [-] 67.0 22.5 44.1 4.55 0.378 0.177 0.283 0.254
BCC-CSM2-MR [-] 95.2 50.7 54.2 3.53 0.134 0.347 0.394 0.305
BGCLND [-] 81.4 36.9 45.9 2.01 0.208 0.331 0.679 0.387
BGCLNDATM_progCO2 [-] 74.2 29.7 41.7 2.02 0.256 0.326 0.746 0.414
CanESM5 [-] 99.7 55.2 59.3 3.01 0.0838 0.338 0.509 0.317
CNRM-ESM2-1 [-] 99.1 54.6 59.9 3.53 0.100 0.329 0.362 0.280
EC-Earth3-CC [-] 103. 58.5 71.0 5.03 0.0695 0.179 0.112 0.135
MeanCMIP6 [-] 81.4 36.9 43.7 3.04 0.211 0.378 0.500 0.367
MIROC-ES2L [-] 115. 70.4 73.6 0.508 0.0493 0.347 0.971 0.429
MPI-ESM1-2-LR [-] 88.0 43.5 50.2 1.52 0.142 0.326 0.785 0.395
MRI-ESM2-0 [-] 50.4 5.92 30.9 1.52 0.744 0.256 0.828 0.521
NorESM2-LM [-] 80.2 35.7 42.7 1.52 0.220 0.387 0.785 0.445
UKESM1-0-LL [-] 73.7 29.2 42.0 3.56 0.350 0.277 0.356 0.315
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 97.2
ACCESS-ESM1-5 [-] 124. 26.5 29.1 4.08 0.0232 0.208 0.244 0.171
BCC-CSM2-MR [-] 111. 14.3 22.9 1.02 0.132 0.0813 0.933 0.307
BGCLND [-] 115. 17.9 21.0 0.00 0.0787 0.228 1.00 0.384
BGCLNDATM_progCO2 [-] 120. 23.1 27.0 1.02 0.0375 0.223 0.933 0.354
CanESM5 [-] 124. 26.6 28.8 2.00 0.0227 0.199 0.756 0.294
CNRM-ESM2-1 [-] 100. 2.94 10.8 1.02 0.658 0.235 0.933 0.515
EC-Earth3-CC [-] 127. 29.3 37.8 6.05 0.0154 0.0837 7.41e-05 0.0457
MeanCMIP6 [-] 96.6 -0.631 7.47 1.02 0.914 0.347 0.933 0.635
MIROC-ES2L [-] 126. 28.9 30.5 1.02 0.0163 0.131 0.933 0.302
MPI-ESM1-2-LR [-] 128. 30.7 47.7 5.03 0.0126 0.0375 0.0717 0.0398
MRI-ESM2-0 [-] 91.5 -5.76 10.3 0.00 0.441 0.283 1.00 0.502
NorESM2-LM [-] 105. 8.00 12.6 2.00 0.320 0.250 0.756 0.394
UKESM1-0-LL [-] 109. 11.4 16.6 1.02 0.198 0.229 0.933 0.397
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 40.1
ACCESS-ESM1-5 [-] 60.0 19.8 40.0 1.40 0.480 0.324 0.775 0.476
BCC-CSM2-MR [-] 49.7 9.53 30.7 1.29 0.582 0.388 0.804 0.541
BGCLND [-] 40.7 0.486 25.6 0.850 0.638 0.430 0.872 0.593
BGCLNDATM_progCO2 [-] 48.7 8.51 28.6 0.895 0.617 0.404 0.885 0.577
CanESM5 [-] 51.7 11.5 34.4 1.17 0.546 0.353 0.818 0.517
CNRM-ESM2-1 [-] 49.0 8.89 31.4 1.19 0.582 0.392 0.851 0.554
EC-Earth3-CC [-] 53.4 13.3 35.8 1.18 0.552 0.342 0.826 0.516
MeanCMIP6 [-] 41.6 1.51 24.1 0.982 0.655 0.458 0.861 0.608
MIROC-ES2L [-] 63.2 23.1 38.2 1.10 0.410 0.385 0.846 0.507
MPI-ESM1-2-LR [-] 54.3 14.2 38.1 1.33 0.507 0.336 0.798 0.494
MRI-ESM2-0 [-] 54.8 14.7 34.2 1.00 0.544 0.388 0.879 0.550
NorESM2-LM [-] 46.9 6.80 29.3 1.06 0.618 0.414 0.874 0.580
UKESM1-0-LL [-] 48.7 8.61 30.7 1.09 0.588 0.388 0.821 0.546
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 25.7
ACCESS-ESM1-5 [-] 45.6 20.0 33.1 1.16 0.494 0.374 0.868 0.527
BCC-CSM2-MR [-] 34.5 8.83 23.3 0.919 0.665 0.451 0.872 0.610
BGCLND [-] 26.0 0.586 18.0 0.334 0.742 0.517 0.981 0.689
BGCLNDATM_progCO2 [-] 34.4 9.01 20.9 0.540 0.691 0.491 0.964 0.659
CanESM5 [-] 36.0 10.3 24.2 0.779 0.663 0.438 0.934 0.618
CNRM-ESM2-1 [-] 33.7 8.07 22.9 1.02 0.695 0.448 0.923 0.629
EC-Earth3-CC [-] 38.1 12.4 24.8 0.718 0.606 0.437 0.956 0.609
MeanCMIP6 [-] 26.9 1.28 16.8 0.499 0.771 0.536 0.966 0.702
MIROC-ES2L [-] 46.2 20.6 30.7 0.816 0.481 0.428 0.945 0.571
MPI-ESM1-2-LR [-] 39.1 13.4 25.3 0.839 0.614 0.436 0.911 0.599
MRI-ESM2-0 [-] 38.3 12.7 24.7 0.520 0.620 0.466 0.961 0.628
NorESM2-LM [-] 32.4 6.75 20.7 0.817 0.718 0.489 0.943 0.660
UKESM1-0-LL [-] 35.7 10.0 22.8 0.660 0.673 0.464 0.944 0.636
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 97.5
ACCESS-ESM1-5 [-] 106. 8.79 38.3 4.76 0.510 0.0621 0.120 0.189
BCC-CSM2-MR [-] 112. 14.5 28.7 4.42 0.299 0.143 0.189 0.194
BGCLND [-] 108. 10.2 23.8 1.71 0.556 0.188 0.796 0.432
BGCLNDATM_progCO2 [-] 109. 11.6 18.9 0.683 0.383 0.320 0.921 0.486
CanESM5 [-] 58.7 -38.9 62.3 2.73 0.0459 0.0231 0.579 0.168
CNRM-ESM2-1 [-] 99.8 2.23 24.0 1.03 0.351 0.195 0.899 0.410
EC-Earth3-CC [-] 90.2 -7.35 42.6 3.41 0.337 0.0420 0.412 0.208
MeanCMIP6 [-] 88.2 -9.29 21.8 2.04 0.478 0.222 0.683 0.401
MIROC-ES2L [-] 143. 45.5 52.9 5.42 0.0303 0.165 0.0445 0.101
MPI-ESM1-2-LR [-] 78.2 -19.3 66.7 3.06 0.289 0.0130 0.511 0.207
MRI-ESM2-0 [-] 132. 34.3 43.7 0.678 0.235 0.149 0.954 0.372
NorESM2-LM [-] 107. 9.00 17.2 0.339 0.573 0.330 0.979 0.553
UKESM1-0-LL [-] 105. 7.85 29.5 5.42 0.535 0.113 0.0445 0.201
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 37.1
ACCESS-ESM1-5 [-] 60.2 23.1 41.5 1.30 0.472 0.357 0.809 0.499
BCC-CSM2-MR [-] 47.2 10.1 30.6 1.21 0.626 0.421 0.818 0.571
BGCLND [-] 36.4 -0.786 23.7 0.674 0.687 0.485 0.904 0.640
BGCLNDATM_progCO2 [-] 46.1 8.91 28.0 0.821 0.658 0.441 0.891 0.608
CanESM5 [-] 47.9 10.8 32.5 1.06 0.607 0.394 0.830 0.556
CNRM-ESM2-1 [-] 47.1 9.99 29.7 0.901 0.638 0.437 0.921 0.608
EC-Earth3-CC [-] 53.3 16.2 35.7 0.927 0.587 0.387 0.893 0.563
MeanCMIP6 [-] 37.3 0.211 23.4 0.887 0.689 0.494 0.882 0.640
MIROC-ES2L [-] 60.3 23.2 37.8 0.968 0.456 0.418 0.894 0.547
MPI-ESM1-2-LR [-] 54.9 17.8 36.1 1.05 0.560 0.393 0.863 0.552
MRI-ESM2-0 [-] 54.8 17.7 34.2 0.720 0.558 0.433 0.923 0.587
NorESM2-LM [-] 42.7 5.58 27.6 0.900 0.680 0.450 0.902 0.620
UKESM1-0-LL [-] 46.1 9.00 29.7 0.929 0.628 0.431 0.867 0.589

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

All Models

Benchmark
Data not available
Data not available
ACCESS-ESM1-5
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
BGCLND
Data not available
Data not available
BGCLNDATM_progCO2
Data not available
Data not available
CanESM5
Data not available
Data not available
CNRM-ESM2-1
Data not available
Data not available
EC-Earth3-CC
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ES2L
Data not available
Data not available
MPI-ESM1-2-LR
Data not available
Data not available
MRI-ESM2-0
Data not available
Data not available
NorESM2-LM
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FluxNet Tower eddy covariance measurements (Tier 1)

  Version:
2015

  Institutions:
FluxNet, AmeriFlux, AfriFlux, AsiaFlux, ChinaFlux, Fluxnet-Canada, KoFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, GreenGrass, OzFlux-TERN, LBA, NECC, ICOS, TCOS-Siberia, and USCCC

  References:
Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T. Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert (2007), Determinants of terrestrialecosystem carbon balance inferred from European eddy covarianceflux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880

Lasslop, G., M. Reichstein, D. Papale, A.D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biology, 16, 187-208, doi:10.1111/j.1365-2486.2009.02041.x

Knauer, J., S. Zaehle, B.E. Medlyn, M. Reichstein, C.A. Williams, M. Migliavacca, M.G. De Kauwe, C. Werner, C. Keitel, P. Kolari, J.-M. Limousin, and M.-L. Linderson (2018), Towards physiologically meaningful water use efficiency estimates from eddy covariance data, Global Change Biology, 24(2), 694-710, doi:10.1111/gcb.13893

  Comment:
Fluxnet variable(s) used: LE_F_MDS