Mean State

Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 92.3
BCC-CSM2-MR [-] 132. 39.9 44.8 1.00 0.264 0.450 0.935 0.525
BGCv2LND.GSW [-] 121. 29.2 35.8 0.508 0.416 0.491 0.966 0.591
BGCv2LNDATM [-] 125. 33.1 37.9 0.508 0.259 0.508 0.966 0.561
CanESM5 [-] 156. 63.8 66.9 3.01 0.0782 0.384 0.504 0.338
GFDL-ESM4 [-] 123. 31.0 42.5 2.52 0.367 0.344 0.536 0.398
MeanCMIP6 [-] 139. 46.5 50.6 0.00 0.199 0.451 1.00 0.525
MIROC-ES2L [-] 157. 65.2 68.3 2.52 0.0819 0.380 0.536 0.344
UKESM1-0-LL [-] 129. 37.1 47.0 0.508 0.270 0.346 0.966 0.482
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 144.
BCC-CSM2-MR [-] 146. 2.23 16.0 0.00 0.850 0.311 1.00 0.618
BGCv2LND.GSW [-] 130. -13.9 18.0 0.00 0.363 0.445 1.00 0.563
BGCv2LNDATM [-] 143. -1.63 21.7 1.02 0.888 0.203 0.933 0.557
CanESM5 [-] 134. -9.84 19.5 1.02 0.488 0.284 0.933 0.497
GFDL-ESM4 [-] 127. -16.7 28.9 1.02 0.295 0.200 0.933 0.407
MeanCMIP6 [-] 136. -8.12 16.7 1.02 0.553 0.355 0.933 0.549
MIROC-ES2L [-] 147. 3.27 19.9 1.02 0.788 0.236 0.933 0.548
UKESM1-0-LL [-] 127. -16.9 22.6 1.02 0.293 0.349 0.933 0.481
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 87.4
BCC-CSM2-MR [-] 78.6 -8.78 25.0 0.722 0.743 0.653 0.932 0.745
BGCv2LND.GSW [-] 75.7 -12.1 23.3 0.537 0.736 0.700 0.950 0.772
BGCv2LNDATM [-] 81.4 -6.39 22.2 0.584 0.786 0.674 0.951 0.771
CanESM5 [-] 79.8 -7.55 24.4 0.624 0.767 0.662 0.934 0.756
GFDL-ESM4 [-] 75.1 -12.3 23.8 0.603 0.736 0.681 0.944 0.761
MeanCMIP6 [-] 79.6 -7.75 21.0 0.552 0.774 0.698 0.950 0.780
MIROC-ES2L [-] 86.1 -1.31 24.9 0.743 0.778 0.643 0.922 0.747
UKESM1-0-LL [-] 77.1 -10.3 23.6 0.599 0.744 0.678 0.942 0.760
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 54.7
BCC-CSM2-MR [-] 42.0 -12.7 25.0 0.671 0.780 0.669 0.947 0.766
BGCv2LND.GSW [-] 47.0 -7.90 20.0 0.255 0.803 0.725 0.981 0.808
BGCv2LNDATM [-] 50.0 -4.94 19.1 0.403 0.844 0.706 0.968 0.806
CanESM5 [-] 48.6 -6.06 21.9 0.285 0.820 0.683 0.979 0.791
GFDL-ESM4 [-] 47.1 -7.56 21.1 0.346 0.828 0.695 0.971 0.797
MeanCMIP6 [-] 48.0 -6.68 19.1 0.265 0.829 0.716 0.980 0.810
MIROC-ES2L [-] 52.2 -2.44 23.7 0.488 0.829 0.658 0.965 0.778
UKESM1-0-LL [-] 49.1 -5.56 19.6 0.326 0.832 0.709 0.976 0.807
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 133.
BCC-CSM2-MR [-] 168. 34.8 40.1 1.02 0.221 0.375 0.894 0.466
BGCv2LND.GSW [-] 143. 9.38 16.5 0.339 0.629 0.490 0.978 0.646
BGCv2LNDATM [-] 141. 7.28 20.4 0.339 0.698 0.423 0.978 0.630
CanESM5 [-] 139. 6.18 25.8 3.06 0.757 0.312 0.436 0.454
GFDL-ESM4 [-] 145. 12.0 22.9 0.00 0.570 0.396 1.00 0.590
MeanCMIP6 [-] 153. 19.7 25.8 0.339 0.382 0.459 0.978 0.569
MIROC-ES2L [-] 151. 17.2 26.8 3.72 0.445 0.408 0.356 0.404
UKESM1-0-LL [-] 150. 16.4 27.6 3.72 0.449 0.348 0.354 0.375
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 81.8
BCC-CSM2-MR [-] 69.2 -12.6 24.1 0.574 0.776 0.690 0.958 0.779
BGCv2LND.GSW [-] 68.7 -13.6 22.8 0.450 0.765 0.736 0.966 0.801
BGCv2LNDATM [-] 73.0 -9.27 21.7 0.486 0.806 0.708 0.964 0.796
CanESM5 [-] 72.0 -9.81 23.5 0.371 0.792 0.701 0.973 0.792
GFDL-ESM4 [-] 67.2 -14.7 22.7 0.487 0.765 0.721 0.965 0.793
MeanCMIP6 [-] 72.3 -9.57 20.3 0.465 0.802 0.732 0.966 0.808
MIROC-ES2L [-] 78.4 -3.39 23.5 0.545 0.821 0.684 0.960 0.787
UKESM1-0-LL [-] 69.4 -12.4 22.9 0.443 0.778 0.713 0.968 0.793

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

All Models

Benchmark
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
BGCv2LND.GSW
Data not available
Data not available
BGCv2LNDATM
Data not available
Data not available
CanESM5
Data not available
Data not available
GFDL-ESM4
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ES2L
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FluxNet Tower eddy covariance measurements (Tier 1)

  Version:
2015

  Institutions:
FluxNet, AmeriFlux, AfriFlux, AsiaFlux, ChinaFlux, Fluxnet-Canada, KoFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, GreenGrass, OzFlux-TERN, LBA, NECC, ICOS, TCOS-Siberia, and USCCC

  References:
Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T. Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert (2007), Determinants of terrestrialecosystem carbon balance inferred from European eddy covarianceflux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880

Lasslop, G., M. Reichstein, D. Papale, A.D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biology, 16, 187-208, doi:10.1111/j.1365-2486.2009.02041.x

Knauer, J., S. Zaehle, B.E. Medlyn, M. Reichstein, C.A. Williams, M. Migliavacca, M.G. De Kauwe, C. Werner, C. Keitel, P. Kolari, J.-M. Limousin, and M.-L. Linderson (2018), Towards physiologically meaningful water use efficiency estimates from eddy covariance data, Global Change Biology, 24(2), 694-710, doi:10.1111/gcb.13893

  Comment:
Fluxnet variable(s) used: NETRAD