Mean State

Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 139.
BCC-CSM2-MR [-] 176. 37.4 38.0 1.02 0.270 0.552 0.933 0.577
BGCv2LND.GSW [-] 179. 40.6 46.9 0.983 0.242 0.496 0.937 0.543
BGCv2LNDATM [-] 183. 44.0 52.5 0.00 0.215 0.498 1.00 0.553
CanESM5 [-] 210. 71.5 76.6 0.983 0.0823 0.392 0.937 0.451
GFDL-ESM4 [-] 172. 33.3 41.8 0.983 0.313 0.438 0.937 0.531
MeanCMIP6 [-] 189. 50.5 52.4 0.983 0.171 0.549 0.937 0.552
MIROC-ES2L [-] 211. 71.7 73.5 0.983 0.0817 0.447 0.937 0.478
UKESM1-0-LL [-] 195. 56.1 60.2 1.02 0.141 0.389 0.933 0.463
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 176.
BCC-CSM2-MR [-] 192. 16.3 24.9 1.02 0.360 0.273 0.933 0.459
BGCv2LND.GSW [-] 171. -5.16 13.7 0.00 0.723 0.457 1.00 0.659
BGCv2LNDATM [-] 175. -0.666 26.4 1.02 0.959 0.190 0.933 0.568
CanESM5 [-] 171. -4.67 21.3 1.02 0.746 0.269 0.933 0.554
GFDL-ESM4 [-] 175. -0.622 28.2 1.02 0.962 0.171 0.933 0.559
MeanCMIP6 [-] 178. 2.66 17.8 1.02 0.846 0.327 0.933 0.608
MIROC-ES2L [-] 182. 6.75 31.9 1.02 0.654 0.137 0.933 0.465
UKESM1-0-LL [-] 169. -6.61 19.5 1.02 0.660 0.324 0.933 0.560
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 140.
BCC-CSM2-MR [-] 138. -1.99 31.6 0.648 0.807 0.608 0.945 0.742
BGCv2LND.GSW [-] 138. -1.85 22.2 0.473 0.841 0.706 0.958 0.803
BGCv2LNDATM [-] 138. -1.84 28.1 0.559 0.839 0.630 0.951 0.763
CanESM5 [-] 145. 5.31 28.7 0.584 0.810 0.645 0.952 0.763
GFDL-ESM4 [-] 132. -7.92 26.4 0.605 0.808 0.662 0.949 0.770
MeanCMIP6 [-] 140. 0.415 23.0 0.555 0.847 0.693 0.952 0.796
MIROC-ES2L [-] 145. 5.41 28.8 0.547 0.819 0.640 0.953 0.763
UKESM1-0-LL [-] 140. 0.380 27.7 0.512 0.818 0.650 0.957 0.769
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 94.5
BCC-CSM2-MR [-] 86.4 -8.08 31.0 0.781 0.863 0.643 0.936 0.771
BGCv2LND.GSW [-] 94.4 0.0224 21.6 0.412 0.875 0.748 0.964 0.834
BGCv2LNDATM [-] 88.5 -5.91 27.2 0.460 0.886 0.669 0.958 0.795
CanESM5 [-] 95.2 0.729 26.3 0.379 0.895 0.683 0.972 0.808
GFDL-ESM4 [-] 89.7 -4.73 25.4 0.379 0.857 0.691 0.968 0.802
MeanCMIP6 [-] 93.6 -0.826 21.4 0.331 0.899 0.725 0.975 0.831
MIROC-ES2L [-] 99.0 4.53 25.2 0.544 0.873 0.699 0.961 0.808
UKESM1-0-LL [-] 95.6 1.12 24.5 0.260 0.894 0.695 0.977 0.815
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 175.
BCC-CSM2-MR [-] 221. 46.4 55.1 0.508 0.205 0.384 0.966 0.485
BGCv2LND.GSW [-] 186. 11.1 20.7 0.00 0.646 0.524 1.00 0.674
BGCv2LNDATM [-] 178. 3.09 29.7 0.00 0.805 0.317 1.00 0.610
CanESM5 [-] 216. 41.5 52.3 1.02 0.247 0.331 0.933 0.460
GFDL-ESM4 [-] 207. 31.9 40.8 0.00 0.329 0.410 1.00 0.537
MeanCMIP6 [-] 206. 31.6 39.7 0.00 0.296 0.478 1.00 0.563
MIROC-ES2L [-] 180. 4.97 24.4 1.02 0.700 0.441 0.933 0.628
UKESM1-0-LL [-] 208. 32.7 45.3 0.508 0.281 0.347 0.966 0.486
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 129.
BCC-CSM2-MR [-] 124. -4.74 31.0 0.604 0.861 0.650 0.957 0.780
BGCv2LND.GSW [-] 126. -2.52 21.6 0.458 0.874 0.749 0.964 0.834
BGCv2LNDATM [-] 124. -4.54 27.6 0.468 0.883 0.671 0.964 0.798
CanESM5 [-] 133. 4.26 28.1 0.433 0.852 0.692 0.968 0.801
GFDL-ESM4 [-] 116. -12.2 26.5 0.473 0.817 0.706 0.966 0.799
MeanCMIP6 [-] 127. -1.07 22.7 0.503 0.886 0.731 0.962 0.828
MIROC-ES2L [-] 133. 4.39 28.0 0.554 0.862 0.689 0.960 0.800
UKESM1-0-LL [-] 128. -0.563 27.7 0.373 0.860 0.688 0.973 0.802

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

All Models

Benchmark
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
BGCv2LND.GSW
Data not available
Data not available
BGCv2LNDATM
Data not available
Data not available
CanESM5
Data not available
Data not available
GFDL-ESM4
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ES2L
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FluxNet Tower eddy covariance measurements (Tier 1)

  Version:
2015

  Institutions:
FluxNet, AmeriFlux, AfriFlux, AsiaFlux, ChinaFlux, Fluxnet-Canada, KoFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, GreenGrass, OzFlux-TERN, LBA, NECC, ICOS, TCOS-Siberia, and USCCC

  References:
Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T. Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert (2007), Determinants of terrestrialecosystem carbon balance inferred from European eddy covarianceflux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880

Lasslop, G., M. Reichstein, D. Papale, A.D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biology, 16, 187-208, doi:10.1111/j.1365-2486.2009.02041.x

Knauer, J., S. Zaehle, B.E. Medlyn, M. Reichstein, C.A. Williams, M. Migliavacca, M.G. De Kauwe, C. Werner, C. Keitel, P. Kolari, J.-M. Limousin, and M.-L. Linderson (2018), Towards physiologically meaningful water use efficiency estimates from eddy covariance data, Global Change Biology, 24(2), 694-710, doi:10.1111/gcb.13893

  Comment:
Fluxnet variable(s) used: SW_IN_F-SW_OUT