Mean State

Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 436.
ACCESS-ESM1-5 [-] 474. 37.7 39.5 1.02 0.0168 0.445 0.933 0.460
BCC-CSM2-MR [-] 465. 29.0 29.1 1.02 0.0430 0.428 0.933 0.458
BGCLND [-] 468. 32.1 33.3 1.02 0.0308 0.479 0.933 0.481
BGCLNDATM_progCO2 [-] 464. 28.2 32.3 1.02 0.0471 0.374 0.933 0.432
CanESM5 [-] 468. 31.8 33.7 1.02 0.0319 0.410 0.933 0.446
CNRM-ESM2-1 [-] 466. 30.3 31.9 1.02 0.0374 0.390 0.933 0.437
EC-Earth3-CC [-] 460. 23.6 29.5 2.00 0.0777 0.156 0.756 0.287
MeanCMIP6 [-] 469. 33.0 33.3 1.02 0.0280 0.438 0.933 0.459
MIROC-ES2L [-] 469. 33.0 33.3 1.02 0.0278 0.476 0.933 0.478
MPI-ESM1-2-LR [-] 467. 30.8 32.7 0.00 0.0354 0.409 1.00 0.463
MRI-ESM2-0 [-] 464. 28.0 30.2 0.00 0.0480 0.398 1.00 0.461
NorESM2-LM [-] 469. 33.1 34.2 0.00 0.0278 0.497 1.00 0.505
UKESM1-0-LL [-] 481. 45.2 45.5 0.00 0.00741 0.345 1.00 0.424
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 452.
ACCESS-ESM1-5 [-] 477. 25.0 26.1 0.00 0.00191 0.242 1.00 0.371
BCC-CSM2-MR [-] 467. 15.2 16.5 2.03 0.0222 0.248 0.749 0.317
BGCLND [-] 454. 2.14 4.46 1.02 0.585 0.397 0.933 0.578
BGCLNDATM_progCO2 [-] 451. -0.192 3.57 1.02 0.953 0.406 0.933 0.674
CanESM5 [-] 460. 8.69 9.64 1.02 0.113 0.389 0.933 0.456
CNRM-ESM2-1 [-] 447. -4.93 5.29 0.00 0.291 0.390 1.00 0.518
EC-Earth3-CC [-] 449. -2.28 7.18 1.02 0.564 0.204 0.933 0.476
MeanCMIP6 [-] 465. 12.9 14.1 0.00 0.0393 0.392 1.00 0.456
MIROC-ES2L [-] 452. 0.306 7.36 1.02 0.926 0.160 0.933 0.545
MPI-ESM1-2-LR [-] 450. -1.58 5.71 0.00 0.673 0.287 1.00 0.562
MRI-ESM2-0 [-] 465. 12.9 14.4 1.02 0.0399 0.348 0.933 0.417
NorESM2-LM [-] 474. 22.3 22.7 0.00 0.00371 0.248 1.00 0.375
UKESM1-0-LL [-] 465. 12.9 14.5 0.00 0.0396 0.331 1.00 0.425
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 376.
ACCESS-ESM1-5 [-] 391. 14.6 27.4 0.422 0.630 0.616 0.967 0.708
BCC-CSM2-MR [-] 379. 2.48 22.5 0.422 0.723 0.612 0.967 0.729
BGCLND [-] 380. 3.42 19.9 0.253 0.733 0.657 0.980 0.757
BGCLNDATM_progCO2 [-] 383. 6.35 21.9 0.386 0.715 0.630 0.970 0.736
CanESM5 [-] 383. 6.91 23.8 0.446 0.709 0.610 0.967 0.724
CNRM-ESM2-1 [-] 381. 4.76 22.5 0.536 0.701 0.620 0.959 0.725
EC-Earth3-CC [-] 378. 1.21 21.5 0.505 0.734 0.599 0.960 0.723
MeanCMIP6 [-] 380. 3.72 19.1 0.251 0.739 0.665 0.981 0.763
MIROC-ES2L [-] 384. 7.48 22.7 0.307 0.722 0.633 0.974 0.740
MPI-ESM1-2-LR [-] 379. 2.64 21.5 0.446 0.731 0.621 0.965 0.734
MRI-ESM2-0 [-] 382. 5.60 20.7 0.341 0.715 0.645 0.967 0.743
NorESM2-LM [-] 391. 14.6 27.2 0.765 0.637 0.610 0.942 0.700
UKESM1-0-LL [-] 378. 2.03 23.2 0.455 0.720 0.593 0.964 0.717
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 339.
ACCESS-ESM1-5 [-] 347. 8.02 22.5 0.429 0.723 0.648 0.968 0.746
BCC-CSM2-MR [-] 334. -5.53 21.3 0.333 0.829 0.611 0.978 0.757
BGCLND [-] 335. -3.06 17.7 0.103 0.853 0.653 0.993 0.788
BGCLNDATM_progCO2 [-] 344. 5.12 18.8 0.0344 0.804 0.676 0.998 0.789
CanESM5 [-] 339. 0.286 17.6 0.0667 0.826 0.662 0.996 0.787
CNRM-ESM2-1 [-] 345. 5.99 21.3 0.100 0.761 0.632 0.993 0.755
EC-Earth3-CC [-] 336. -3.36 16.7 0.133 0.865 0.661 0.991 0.795
MeanCMIP6 [-] 337. -1.86 15.0 0.0333 0.841 0.704 0.998 0.812
MIROC-ES2L [-] 339. 0.147 19.0 0.0333 0.817 0.654 0.998 0.781
MPI-ESM1-2-LR [-] 338. -1.01 17.3 0.166 0.854 0.661 0.989 0.791
MRI-ESM2-0 [-] 345. 5.93 18.6 0.0667 0.785 0.681 0.996 0.785
NorESM2-LM [-] 345. 5.78 20.5 0.731 0.769 0.657 0.951 0.758
UKESM1-0-LL [-] 333. -5.74 20.3 0.233 0.838 0.608 0.984 0.759
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 450.
ACCESS-ESM1-5 [-] 478. 27.7 34.1 0.508 0.000508 0.0830 0.966 0.283
BCC-CSM2-MR [-] 466. 15.9 19.9 0.508 0.0123 0.196 0.966 0.343
BGCLND [-] 453. 2.66 5.77 0.00 0.508 0.328 1.00 0.541
BGCLNDATM_progCO2 [-] 449. -0.989 5.84 0.508 0.259 0.313 0.966 0.463
CanESM5 [-] 497. 46.6 55.4 0.00 0.000206 0.0141 1.00 0.257
CNRM-ESM2-1 [-] 454. 4.18 10.7 0.00 0.496 0.0833 1.00 0.416
EC-Earth3-CC [-] 472. 21.9 28.3 1.02 0.00235 0.116 0.874 0.277
MeanCMIP6 [-] 468. 17.9 22.4 0.00 0.00781 0.154 1.00 0.329
MIROC-ES2L [-] 453. 2.48 8.92 1.02 0.498 0.125 0.874 0.405
MPI-ESM1-2-LR [-] 465. 14.5 23.6 0.508 0.0836 0.0188 0.966 0.272
MRI-ESM2-0 [-] 461. 10.4 13.3 0.00 0.0924 0.207 1.00 0.376
NorESM2-LM [-] 463. 13.1 14.8 0.508 0.0460 0.222 0.966 0.364
UKESM1-0-LL [-] 469. 18.7 22.8 0.00 0.00747 0.160 1.00 0.332
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 360.
ACCESS-ESM1-5 [-] 376. 15.3 27.3 0.389 0.682 0.652 0.970 0.739
BCC-CSM2-MR [-] 362. 1.45 22.0 0.344 0.788 0.633 0.976 0.757
BGCLND [-] 363. 2.74 19.2 0.143 0.799 0.679 0.989 0.787
BGCLNDATM_progCO2 [-] 368. 7.63 22.3 0.348 0.759 0.652 0.973 0.759
CanESM5 [-] 368. 7.21 23.1 0.367 0.762 0.644 0.973 0.756
CNRM-ESM2-1 [-] 365. 4.80 21.8 0.451 0.763 0.657 0.966 0.760
EC-Earth3-CC [-] 360. 0.0212 20.7 0.498 0.801 0.640 0.962 0.761
MeanCMIP6 [-] 364. 3.45 18.6 0.189 0.799 0.691 0.986 0.792
MIROC-ES2L [-] 368. 7.96 23.2 0.189 0.748 0.662 0.986 0.765
MPI-ESM1-2-LR [-] 364. 3.26 20.9 0.367 0.786 0.659 0.971 0.769
MRI-ESM2-0 [-] 366. 5.87 20.0 0.331 0.769 0.688 0.968 0.778
NorESM2-LM [-] 376. 15.4 27.6 0.771 0.686 0.635 0.943 0.725
UKESM1-0-LL [-] 362. 1.87 23.4 0.367 0.777 0.611 0.973 0.743

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

All Models

Benchmark
Data not available
Data not available
ACCESS-ESM1-5
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
BGCLND
Data not available
Data not available
BGCLNDATM_progCO2
Data not available
Data not available
CanESM5
Data not available
Data not available
CNRM-ESM2-1
Data not available
Data not available
EC-Earth3-CC
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ES2L
Data not available
Data not available
MPI-ESM1-2-LR
Data not available
Data not available
MRI-ESM2-0
Data not available
Data not available
NorESM2-LM
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FluxNet Tower eddy covariance measurements (Tier 1)

  Version:
2015

  Institutions:
FluxNet, AmeriFlux, AfriFlux, AsiaFlux, ChinaFlux, Fluxnet-Canada, KoFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, GreenGrass, OzFlux-TERN, LBA, NECC, ICOS, TCOS-Siberia, and USCCC

  References:
Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T. Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert (2007), Determinants of terrestrialecosystem carbon balance inferred from European eddy covarianceflux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880

Lasslop, G., M. Reichstein, D. Papale, A.D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biology, 16, 187-208, doi:10.1111/j.1365-2486.2009.02041.x

Knauer, J., S. Zaehle, B.E. Medlyn, M. Reichstein, C.A. Williams, M. Migliavacca, M.G. De Kauwe, C. Werner, C. Keitel, P. Kolari, J.-M. Limousin, and M.-L. Linderson (2018), Towards physiologically meaningful water use efficiency estimates from eddy covariance data, Global Change Biology, 24(2), 694-710, doi:10.1111/gcb.13893

  Comment:
Fluxnet variable(s) used: LW_OUT