What if ILAMB, LVT, et al were in a web application?

Gab Abramowitz (gabsun@gmail.com UNSW Australia)

- All users could have equal access (no setup / local resources required)
- All plots and meta-data could be viewed side-by-side in custom web pages
 - Including comparison with results from other research groups internationally
- MIPs could effectively become automatic AND ongoing
- Provenance and meta data could be stored & data mined systematically
 - Capture performance history throughout model development
 - Aid reproducibility
- API could allow automatic testing /continuous integration (e.g. Jenkins)
- Mirrored installations at HPC nodes could avoid data upload bottlenecks while maintaining a single web presence
- Ability to include new evaluation packages as they develop
- How would it actually work? Come and take a look... Poster A.1

The package has been designed with the intention that users can add their own benchmarks to the system. This is done by implementing a custom version of what we call a *confrontation*.

Confrontation

- The benchmark dataset a CF-compliant netCDF4 file
- The analysis routines which extract comparable quantities from the model results, perform analysis, render output images, and prepare the HTML output.

Permafrost

 Poster will detail how this is done by an example.

Emergent Constraint Developed from CMIP5 ESMs

An emergent constraint based on carbon inventories was applied to constrain future atmospheric CO_2 projections from CMIP5 ESMs.

- Much of the model-to-model variation in projected CO₂ during the 21st century is tied to biases that existed during the observational era.
- Model differences in the representation of concetration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability.
- ► Range of temperature increases at 2100 slightly reduced, from 5.1±2.2°C for the full ensemble, to 5.0±1.9°C after applying the emergent constraint.

Probability Density of Atmospheric CO₂ Mole Fraction

At 2060: 600 ± 14 ppm, 21 ppm below the multi-model mean At 2100: 947 \pm 35 ppm, 32 ppm below the multi-model mean

Hoffman, Forrest M., James T. Randerson, Vivek K. Arora, Qing Bao, Patricia Cadule, Duoying Ji, Chris D. Jones, Michio Kawamiya, Samar Khatiwala, Keith Lindsay, Atsushi Obata, Elena Shevliakova, Katharina D. Six, Jerry F. Tjiputra, Evgeny M. Volodin, and Tongwen Wu. February 2014. "Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models." J. Geophys. Res. Biogeosci., 119(2):141–162. doi:10.1002/2013JG002381.

Hydrological Metrics for Earth System Modeling

Hong-Yi Li, Wei Wang, L. Ruby Leung (PNNL)

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

- Natural watersheds exhibit emergent linkages among annual mean and inter- and intra-annual variability of streamflow and floods
- These relationships arising from interconnections between different hydrological processes can be used as metrics for hydrologic simulations
- Can Earth system models reproduce these linkages, and the underlying process interconnections?

Reducing the uncertainty in the projection of the terrestrial carbon cycle by

fusing models with remote sensing data

Shawn Serbin¹, Toni Viskari¹², Phil Townsend³, Alexey Shiklomanov⁴, Mike Dietze⁴

Acknowledgements: This project was funded by NASA Terrestrial Ecology grant NNX14AH65G

Benchmarking C cycle retrievals: an example using carbon use efficiency

Mathew Williams, Jean-François Exbrayat, A. Anthony Bloom, T. Luke Smallman, Chris Jones

THE UNIVERSITY of EDINBURGH

National Centre for Earth Observation

LIBAL ENVIRONMENT RESEARCH COUNCI

- Global carbon cycle modelling suffers from a lack of observations and systematic evaluation
- Data assimilation approaches can constrain simple models using multiple data-streams
- CARDAMOM produces potentially very useful information about relationships between carbon cycle variables or processes
- Models have never been tested in this way before and there is a real gap for this type of process-based evaluation

CARDAMOM: Diagnostic ecosystem C balance model DALEC2 and datasets used to retrieve $1^{\circ} \times 1^{\circ}$ C state and process variables

Q: Why is there a tendency for CUE to increase at high northern latitudes (this is not suggested by CARDAMOM)

Vegetation dynamics benchmarking based on forest inventory data Daniel Johnson¹, <u>Chonggang Xu¹</u>, Rosie Fisher², Ryan Knox³, Stuart Davis⁴, Chris Woodall⁵, Nate McDowell¹

1: Los Alamos National Laboratory; 2: National Center for Atmospheric Research; 3: Lawrence Berkeley National Laboratory; 4: Smithsonian Institution; 5: USFS.

1. Demographic metrics: Tree mortality rate based FIA 2. Successional trajectories

FREE AIR CO₂ ENRICHMENT (FACE) MODEL-DATA SYNTHESIS

· Aim to examine how well our ecosystem models replicate observed responses to a step change in CO₂ ($\uparrow \sim 40$ %).

Oak Ridge, Tennessee

Duke, North Carolina

- · But not to find a **best** model, trying to avoid metrics...
- We applied 11 process based models (C & C-N) to the Duke and Oak Ridge FACE experiments.

Decadal trends in the seasonal-cycle amplitude of terrestrial CO₂ exchange resulting from the ensemble of terrestrial biosphere models

Akihiko Ito and MsTMIP model groups, Tellus B (in press)

- Increase of seasonal-cycle amplitude (SCA) of atmosphere–ecosystem CO₂ exchange
- Comparison of 15 models and factorial experiments (climate, CO₂, land-use, and N)
- Considerable impact of elevated CO₂ (left) and inter-model variability (right)

North American Carbon Program

References: Keeling et al. (2015), Graven et al. (2013), Gray et al. (2014), Zeng et al. (2014), Forkel et al. (2016)

Height-Structured Vegetation and the Carbon Cycle in the NASA GISS Earth System Model/ Ent Terrestrial Biosphere Model

Nancy Y. Kiang¹, Igor Aleinov², Wenge Ni-Meister³, Wenze Yang⁷, Yeonjoo Kim⁴, Crystal Schaaf⁵, Anastasia Romanou², Qingsong Sun⁵, Tian Yao⁶, Feng Zhao⁷, Zhuosen Wang⁷ ¹NASA Goddard Institute for Space Studies, ²Columbia University, ³CUNY Hunter College, ⁴Yonsei University, ⁵UMass-Boston, ⁶USRA/NASA GSFC, ⁷Univ. of Maryland

From the leaf to the land surface: using data and models to improve (a single) land model processes

Nick Smith¹, Danica Lombardozzi², & Jeff Dukes¹

¹Purdue University, IN, USA; ²National Center for Atmospheric Research, CO, USA

The Model-Data Integration Framework for NASA's Arctic Boreal Vulnerability Experiment (ABoVE)

Eric J. Stofferahn^{1,*}, Joshua B. Fisher², Daniel J. Hayes³, Deborah N. Huntzinger⁴, Christopher R. Schwalm⁵

1 – Jet Propulsion Laboratory, California Institute of Technology; 2 – Jet Propulsion Laboratory; 3 – University of Maine; 4 – Northern Arizona University; 5 – Woods Hole Research Center * - Corresponding Author: ericstofferahn@gmail.com

© 2016. All rights reserved

Diagnosing the downstream performance of the European Center for Meteorological Weather Forecasting (ECMWF) land data assimilation system. Thomas R.H. Holmes , Concepcion Arroyo, Wade T. Crow , Martha Anderson

ECMWF experiments assimilate separately:

CTRL (Operational): Tair 2m & RH acquired in situ observations from weather stations

EXPT (Ongoing research): SMOS L-band TB. Currently showing degraded Tair for the 24 hr forecast over the Central US

SOIL MOISTURE ANALYSIS (0-7cm)

ECMWF experiments vs. 273 ground stations: SCAN, USCRN, Iowa and Oklahoma 'super sites'.

Difference in correlation between SM in situ networks and ECMWF (EXPT-CTRL) by land use.

Example of 1st meter soil water content in corn belt.

> Soil moisture DA:

Surface layer: Improvement in temporal correlation and little change in soil moisture bias (CTRL Vs EXP) Total water: significant regional biases

Mean absolute difference error Tair

ET 24 hr FORECAST

ECMWF ET forecasts vs. 31 in situ locations from AMERIFLUX and spatially-continuous remote sensing ALEXI (Atmosphere-Land Exchange Inverse) retrievals:

Example of ET time series in corn belt.

- ➢ By using RS we revealed a degraded
- temporal correlation in ET over the corn belt.
- This degraded ET is linked to a large reduction in ET during the drought year (2012).
- >The break-down in forecast performance over the corn belt is not explained by the SMOS DA and points to an issue within the LSM.

Difference in correlation between ET ALEXI and ECMWF (EXPT-CTRL)

>We demonstrate the use of ALEXI as a benchmark in LSM evaluation

obs4MIPs

https://www.earthsystemcog.org/projects/obs4mips

- A Project for identifying, documenting and disseminating observations for climate model evaluation
- Data sets accessible on the ESGF alongside CMIP model output, adhering to the same data conventions to facilitate research
- Guided by the World Climate Research Program (WCRP) Data Advisory Council

esa

EUMETSAT

Global 0.5 deg Hourly Land Surface 2m Air Temperature Datasets for Model Evaluations Xubin Zeng (University of Arizona), Aihui Wang

Who should come to our poster?

- If you compare earth system model (ESM) monthly mean T2m (averaged over all time steps) over land with reanalysis datasets (because reanalysis T2m is not good enough)
- If you compare ESM monthly mean T2m with global in situ datasets (e.g., CRU) (because you compare "apple" with "orange")
- If you do the right thing by saving monthly averaged diurnal cycle of T2m from models but compare its range with CRU diurnal temperature range DTR = Tx Tn (because, again, you compare "guava" with "pomegranate")
- If you adjust reanalysis T2m using CRU Tm = (Tx + Tn)/2 to drive your land surface models (because this does not adjust the diurnal temperature range)

Bottom line: we have the new global datasets to help you solve these problems.

Performance of the new soil carbon module in JSBACH D.Goll, V. Brovkin, T. Raddatz, J. Liski, and T. Thum

6.2 Projected change in SOC (rcp8.5)

CTL: CMIP5 version of JSBACH YASSO: JSBACH with YASSO by Lieski et al.

Goll et al., GBC, 2015

A benchmark and diagnostic of climatological temperature control on soil carbon turnover

C. D. Koven¹, G. Hugelius², D. M. Lawrence³, W. Wieder³

(1) Lawrence Berkeley Lab; (2) Stockholm University; (3) NCAR

At our poster, we will:

- Explain how we constructed this figure and why we think it is useful.
- Derive a "climatological Q₁₀" from this relationship and show that it separates the world into "emergent" and "non-emergent" regimes based on whether or not the instantaneous and climatological Q₁₀s agree.
- 3. Show a simplified scaling theory that explains the change in sensitivity from temperate to cold climates.
- Benchmark several CMIP5 (all linear ODE-based) soil carbon models to show that they all have problems.
- Benchmark some newer soil carbon model approaches, including a linear PDE-based model (CLM4.5) and a nonlinear ODE-based model (MIMICS) that show some promise.

Optimal fingerprint methods

 \rightarrow observations $x_i \rightarrow$ forcings from coupled model simulations ϵ_{IV} \rightarrow estimated internal variability from models → scaling factors 6

Diagram for the application of the D&A methods onto the terrestrial dynamics

Sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER) programs, and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Please contact maoj@ornl.gov for further information.

A framework of detecting and attributing terrestrial ecosystem dynamics

Jiafu Mao and coauthors

Optimal D&A results for 1982–2011 time series of LAI anomalies

JSBACH performance in comparison to observations and other models

T. Raddatz, V. Brovkin, A. Loew, S. Hagemann, C. Reick, D. Dalmonech, and S. Zaehle MPI for Meteorology & Biogeochemistry

Vegetation greennees

Surface albedo (JSBACH vs MODIS)

MAM

SON

albedo too high かかかかかり キャント たんしん ややかか albedo too low がかかかかり たいしん かんやややか [W/m**2] Brovkin et al., 2013, J Adv Model Earth Syst

More on the poster: evaluation of vegetation cover, carbon, hydrology

Process Evaluation: Heat Transfer with Snow

Benchmarking N/P competition (Qing Zhu & William J. Riley LBNL)

Hours

Week

Month

Short-term competition (hours - days): Equilibrium Chemistry Approximation vs. Relative Demand vs. Microbes Outcompete Plants

Long-term competition (~ years): Functional Balance Approach + ECA vs. Fixed allocation + RD vs. Dynamic allocation + ECA

Year

Decade

Benchmarking specific processes of permafrost soil C formation

G., Hugelius, A. D. McGuire, T. J. Bohn, E. J. Burke, S. Chadburn, G. Chen, X. Chen, D. J. Hayes, E. E. Jafarov, C. D. Koven, S. Peng and K. M. Schaefer

2. Create adapted maps for benchmarking

1. Detailed pedon data (n: >500)

3. Spatial analyses against modelled soil C

Ambiguous Numerical Coupling of Carbon and Nitrogen Dynamics is Fatal for Quality Carbon-Climate Feedback Predictions

Jinyun Tang and William J. Riley (LBNL)

Problem

Predictions

New developments should explore

- How to ensure a robust and consistent coupling between carbon and nutrient dynamics.
- How the quality of existing model applications are affected by inconsistent CN coupling.