
What	if	ILAMB,	LVT,	et	al	were	in	a	web	applica8on?		
Gab	Abramowitz	(gabsun@gmail.com	UNSW	Australia)	

•  All	users	could	have	equal	access	(no	setup	/	local	resources	required)	
•  All	plots	and	meta-data	could	be	viewed	side-by-side	in	custom	web	pages	

–  Including	comparison	with	results	from	other	research	groups	interna8onally	

•  MIPs	could	effec8vely	become	automa8c	AND	ongoing	

•  Provenance	and	meta	data	could	be	stored	&	data	mined	systema8cally	
–  Capture	performance	history	throughout	model	development	
–  Aid	reproducibility	

•  API	could	allow	automa8c	tes8ng	/con8nuous	integra8on	(e.g.	Jenkins)	

•  Mirrored	installa8ons	at	HPC	nodes	could	avoid	data	upload	boVlenecks	
while	maintaining	a	single	web	presence	

•  Ability	to	include	new	evalua8on	packages	as	they	develop	

•  How	would	it	actually	work?	Come	and	take	a	look…	 Poster	A.1	



A.2 The Python-based ILAMB Benchmarking System

The package has been designed with the intention that users can
add their own benchmarks to the system. This is done by
implementing a custom version of what we call a confrontation.

Confrontation

I The benchmark dataset - a
CF-compliant netCDF4 file

I The analysis routines which
extract comparable
quantities from the model
results, perform analysis,
render output images, and
prepare the HTML output.

Permafrost

I Poster will detail how this is
done by an example.

CCSM4 Extent Bias



Emergent Constraint Developed from CMIP5 ESMs
An emergent constraint based on
carbon inventories was applied to
constrain future atmospheric
CO2 projections from CMIP5
ESMs.
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I Much of the
model-to-model variation
in projected CO2 during
the 21st century is tied to
biases that existed during
the observational era.

I Model differences in the
representation of
concetration–carbon
feedbacks and other
slowly changing carbon
cycle processes appear to
be the primary driver of
this variability.

I Range of temperature
increases at 2100 slightly
reduced, from 5.1 ± 2.2◦C
for the full ensemble, to
5.0 ± 1.9◦C after applying
the emergent constraint.

Probability Density of Atmospheric CO2 Mole Fraction
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b) 2100

Best estimate using Mauna Loa CO2

At 2060: 600 ± 14 ppm, 21 ppm
below the multi-model mean

At 2100: 947 ± 35 ppm, 32 ppm
below the multi-model mean

Hoffman, Forrest M., James T. Randerson, Vivek K. Arora, Qing Bao, Patricia Cadule, Duoying Ji, Chris D. Jones, Michio Kawamiya,
Samar Khatiwala, Keith Lindsay, Atsushi Obata, Elena Shevliakova, Katharina D. Six, Jerry F. Tjiputra, Evgeny M. Volodin, and
Tongwen Wu. February 2014. “Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models.”
J. Geophys. Res. Biogeosci., 119(2):141–162. doi:10.1002/2013JG002381.

http://dx.doi.org/10.1002/2013JG002381


Hydrological Metrics for Earth System Modeling
Hong-Yi Li, Wei Wang, L. Ruby Leung (PNNL)

 Natural watersheds exhibit emergent linkages among annual mean and 
inter- and intra-annual variability of streamflow and floods

 These relationships arising from interconnections between different 
hydrological processes can be used as metrics for hydrologic simulations

 Can Earth system models reproduce these linkages, and the underlying 
process interconnections?  
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Reducing	the	uncertainty	in	the	projection	of	the	terrestrial	carbon	cycle	by	
fusing	models	with	remote	sensing	data

Acknowledgements:	This	project	was	funded	by	NASA	Terrestrial	Ecology	grant	NNX14AH65G

Shawn	Serbin1,	Toni	Viskari12,	Phil	Townsend3,	Alexey	Shiklomanov4,	Mike	Dietze4

Provide the capacity to benchmark and evaluate internal model
representations of canopy radiative transfer and directly assimilate
remote sensing observations to inform relevant processes



Benchmarking C cycle retrievals: an example using carbon use efficiency  
Mathew Williams, Jean-François Exbrayat, A. Anthony Bloom, T. Luke Smallman, Chris Jones  
 

CARDAMOM: Diagnostic ecosystem C balance model 
DALEC2 and datasets used to retrieve 1° × 1 °C state and 
process variables 

Use CARDAMOM estimated carbon use efficiency 
(NPP:GPP) to evaluate ESM carbon cycling 

.	

Q:	Why	is	there	a	tendency	for	CUE	to	increase	at	high	northern	
la8tudes	(this	is	not	suggested	by	CARDAMOM)	

CUE from selected ESMs 

CARDAMOM CUE 

•  Global	carbon	cycle	modelling	suffers	from	a	
lack	of	observa8ons	and	systema8c	evalua8on	

•  Data	assimila8on	approaches	can	constrain	
simple	models	using	mul8ple	data-streams	

•  CARDAMOM	produces	poten8ally	very	useful	
informa8on	about	rela8onships	between	
carbon	cycle	variables	or	processes	

•  Models	have	never	been	tested	in	this	way	
before	and	there	is	a	real	gap	for	this	type	of	
process-based	evalua8on	



Vegetation dynamics benchmarking based on forest inventory data  
Daniel Johnson1, Chonggang Xu1, Rosie Fisher2, Ryan Knox3, Stuart Davis4, Chris Woodall5, Nate McDowell1 

 
 1: Los Alamos National Laboratory;  2: National Center for Atmospheric Research; 3: Lawrence Berkeley National Laboratory; 4: Smithsonian Institution; 5: USFS.  

 

3. Functional relationships: Mortality vs Species 
Richness based on ForestGEO plots 

1. Demographic metrics: Tree mortality rate based FIA 2. Successional trajectories 
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free air co2 enrichment (face) model-data synthesis∙

∙ Aim to examine how well our ecosystem models replicate
observed responses to a step change in CO2 (↑ ∼40 %).

Oak Ridge, Tennessee Duke, North Carolina

∙ But not to find a best model, trying to avoid metrics...

∙ We applied 11 process based models (C & C-N) to the Duke and
Oak Ridge FACE experiments.

1



Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 
exchange resulting from the ensemble of terrestrial biosphere models 	

Akihiko Ito and MsTMIP model groups, Tellus B (in press)	

-	Increase	of	seasonal-cycle	amplitude	(SCA)	of	atmosphere–ecosystem	CO2	exchange	
-	Comparison	of	15	models	and	factorial	experiments	(climate,	CO2,	land-use,	and	N)	
-	Considerable	impact	of	elevated	CO2	(leE)	and	inter-model	variability	(right)	

References: Keeling et al. (2015), Graven et al. (2013), Gray et al. (2014), Zeng et al. (2014), Forkel et al. (2016) 	
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From the leaf to the land surface: using data and 
models to improve (a single) land model processes 

Nick Smith1, Danica Lombardozzi2, & Jeff Dukes1 

1Purdue University, IN, USA; 2National Center for Atmospheric Research, CO, USA 
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The Model-Data Integration Framework for NASA’s Arctic Boreal Vulnerability Experiment (ABoVE)
Eric J. Stofferahn1,*, Joshua B. Fisher2, Daniel J. Hayes3, Deborah N. Huntzinger4, Christopher R. Schwalm5

1 – Jet Propulsion Laboratory, California Institute of Technology; 2 – Jet Propulsion Laboratory; 3 – University of Maine; 4 – Northern Arizona University; 5 – Woods Hole Research Center
* - Corresponding Author: ericstofferahn@gmail.com
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Diagnosing the downstream performance of the European Center for Meteorological Weather Forecasting 
(ECMWF) land data assimilation system. 

Thomas  R.H. Holmes ,Concepcion  Arroyo, Wade T. Crow , Martha Anderson 

DA SM LSM ET NWP 

DA SM LSM NWP ET 

Correlation ALEXI and ECMWF (CTRL) 

Difference in correlation between ET ALEXI 
and  ECMWF (EXPT-CTRL) 

ET 24 hr FORECAST 
ECMWF ET forecasts  vs. 31 in situ locations from 

AMERIFLUX and spatially-continuous remote sensing  
ALEXI (Atmosphere-Land Exchange Inverse) retrievals: 

 
Tair+ RH 

Tair 
forecast 

OS 
SM   S 

TB 
Tair 

forecast 

 
SMOS 

SOIL MOISTURE ANALYSIS (0-7cm) 
ECMWF experiments vs. 273  ground stations: 

SCAN, USCRN, Iowa and Oklahoma ‘super sites’. 

Difference in correlation  between SM in situ networks 
and ECMWF (EXPT-CTRL) by land use. 

 EXPT (Ongoing research): SMOS L-band TB. 
Currently showing degraded Tair for the 24 hr 
forecast over the Central US 

ECMWF experiments assimilate separately: 

CTRL (Operational): Tair 2m & RH acquired in situ 
observations from weather stations 

Mean absolute difference error  Tair 

Example of 1st meter soil water content in corn belt. 
 
Soil moisture DA:  
Surface layer: Improvement in temporal correlation 
and little change in soil moisture bias (CTRL Vs EXP)  
Total water: significant regional biases   
 

 
By using RS we revealed a degraded   
    temporal correlation in ET over the corn belt.  
This degraded ET is linked to a large reduction  
    in ET during the drought year (2012).   
The break-down in forecast performance over the  
     corn belt is not explained by the SMOS DA and points to an issue 
     within the LSM .  
 
 

We demonstrate the use 
of ALEXI as a benchmark 
in LSM evaluation 

Example of ET time series in corn belt. 

Difference in correlation between ET in situ , remote 
sensing and ECMWF (EXPT-CTRL) by land use. 



•  A	Project	for	iden.fying,	documen.ng	and	
dissemina.ng	observa.ons	for	climate	
model	evalua.on	

•  Data	sets	accessible	on	the	ESGF	alongside	
CMIP	model	output,	adhering	to	the	same	
data	conven.ons	to	facilitate	research	

	
•  Guided	by	the	World	Climate	Research	

Program	(WCRP)	Data	Advisory	Council	
	

obs4MIPs	
hGps://www.earthsystemcog.org/projects/obs4mips	 Obs4MIPs	

….		and	growing!	

Model	
Output	

Gridded	datasets	

Target	Quan..es	
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Global 0.5 deg Hourly Land Surface 2m Air 

Temperature Datasets for Model Evaluations               
Xubin Zeng (University of Arizona), Aihui Wang 

 

Who should come to our poster? 

• If you compare earth system model (ESM) monthly mean T2m 

(averaged over all time steps) over land with reanalysis datasets 

(because reanalysis T2m is not good enough)  

• If you compare ESM monthly mean T2m with global in situ 

datasets (e.g., CRU) (because you compare “apple” with 

“orange”)  

• If you do the right thing by saving monthly averaged diurnal 

cycle of T2m from models but compare its range with CRU 

diurnal temperature range DTR = Tx – Tn (because, again,      

you compare “guava” with “pomegranate”) 

• If you adjust reanalysis T2m using CRU Tm = (Tx + Tn)/2 to 

drive your land surface models (because this does not adjust the 

diurnal temperature range)  
 

Bottom line: we have the new global datasets to help you solve 

these problems. 



Performance	
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A	benchmark	and	diagnos1c	of	climatological	temperature	
control	on	soil	carbon	turnover	

C.	D.	Koven1,	G.	Hugelius2,	D.	M.	Lawrence3,	W.	Wieder3	
(1)	Lawrence	Berkeley	Lab;	(2)	Stockholm	University;	(3)	NCAR	

At	our	poster,	we	will:	
1.  Explain	how	we	constructed	this	

figure	and	why	we	think	it	is	useful.	
2.  Derive	a	“climatological	Q10”	from	this	

relaUonship	and	show	that	it	
separates	the	world	into	“emergent”	
and	“non-emergent”	regimes	based	
on	whether	or	not	the	instantaneous	
and	climatological	Q10s	agree.	

3.  Show	a	simplified	scaling	theory	that	
explains	the	change	in	sensiUvity	from	
temperate	to	cold	climates.	

4.  Benchmark	several	CMIP5	(all	linear	
ODE-based)	soil	carbon	models	to	
show	that	they	all	have	problems.	

5.  Benchmark	some	newer	soil	carbon	
model	approaches,	including	a	linear	
PDE-based	model	(CLM4.5)	and	a	
nonlinear	ODE-based	model	(MIMICS)	
that	show	some	promise.	



A framework of detecting and attributing  
terrestrial ecosystem dynamics 

Jiafu Mao and coauthors 

  Sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER) programs, and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, 
  LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Please contact maoj@ornl.gov for further information. 

Results	from	opCmal	D&A	for	1982–2011	Cme	
series	of	LAI	anomalies	
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Figure 4: Results from optimal D&A for 1982–2011 time series of LAI anomalies.  390	
The D&A analysis was performed over land of the northern-extratropical latitudes on ensemble-391	
mean 1982–2011 time series of LAI anomalies. Response patterns were derived from CMIP5 392	
simulations accounting for both anthropogenic and natural forcings (ALL, in red), or greenhouse 393	
gas forcings only (GHG, in green), in a one-signal detection analysis. Observational average of 394	
LAI3g and GEOLAND2 was used as reference in the analysis. (a) Scaling factors (β—see text) 395	
best estimates and their 90% confidence intervals, (b) attributable trends over the 30-year-long 396	
time series, and (c) p-value of the residual consistency test (RCT). Results were obtained from a 397	
total least square (TLS) analysis using the multi-model mean or selected individual model 398	
responses. “Multi1” and “Multi3” refer to two different CMIP5 ensemble means (see text). 399	
Observational uncertainty was assessed using individual satellite-derived observations (LAI3g or 400	
GEOLAND2) regressed onto the “Multi1” response pattern.  401	
 402	
Methods	403	
Detection and attribution. Two distinct statistical approaches were used to detect and attribute 404	
the LAI changes in this study. The simple comparison of observed and simulated LAI trends (Fig. 405	
3) is based on a simple T-test, which is further discussed in the SI3. Then a more conventional 406	
D&A analysis is based on an optimal regression technique in which observations Y are regressed 407	
onto the expected response to historical forcing changes !∗ (i.e., ! =  !∗ ! +  !, where ε 408	
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MulC1:	only	one	simula(on	from	each	model;	MulC3:	models	with	at	least	three	members		

Op#mal	D&A	results	for	1982–2011	#me	
series	of	LAI	anomalies		
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Finishing	Prep:	
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Regression:	
OLS	or	TLS	

Polish	Output:	
confidence	intervals	
for	betas	and	RCT		

Diagram	for	the	applica#on	of	the	D&A	methods	
onto	the	terrestrial	dynamics		

A framework of detecting and attributing terrestrial ecosystem dynamics 
Jiafu Mao1†, Whitney Forbes2, Daniel M. Ricciuto1, Mingzhou Jin2, Xiaoying Shi1, 

 Peter E. Thornton1, and Forrest M. Hoffman3 
1Environmental Sciences Division and Climate Change Science Institute, ORNL, Oak Ridge, TN, USA  

2Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, US 
3Computer Science and Mathematics Division and Climate Change Science Institute, ORNL, Oak Ridge, TN 37831, USA  

Overview:	The	sta(s(cal	methods	of	detec(on	and	a0ribu(on	(D&A)	have	been	widely	used	in	studies	of	climate	change	and	quan(fica(ons	of	causes	
underlying	the	mul(-year	changes.	Their	successful	applica(ons	in	the	terrestrial	ecosystems,	however,	are	limited,	due	to	the	lack	of	long-term	and	
broad-scale	observa(onal	records,	and	the	lack	of	suitable	simula(ons	from	both	coupled	and	uncoupled	models.	We	will	overcome	these	challenges	
by	proposing	a	framework	that	includes	the	development	of	effec(ve	D&A	algorithms,	the	design	of	factorial	land	model	ensemble	simula(ons,	and	
the	assembling	of	observa(onal	and	observa(on-based	datasets	at	relevant	scales.	This	framework	is	expected	to	increase	the	efficiency	and	our	
confidence	in	a0ribu(ng	observed	changes	in	carbon	and	water	fluxes,	and	vegeta(on	ac(vi(es	to	extensive	natural	and	anthropogenic	factors.	

	
	
	
	

D&A	for	terrestrial	ecosystem	variables:	
ª Observa(onal	data	are	finally	beginning	to	be	
long	enough	to	complete	formal	D&A	studies.		
ª Using	coupled	models	to	generate	simula(ons,	
par(cularly	for	the	spinup	and	PI	control	runs,	is	
very	computa(onally	intensive.	Offline	models	
run	much	more	quickly	and	efficiently.		

	
								Figure	1:	Diagram	for	the	applica4on	of	the	D&A	methods	onto	the	terrestrial	dynamics.		

Adap8on	of	the	standard	D&A	for	offline	runs:			
ª The	linear	regression	method	requires	
es(ma(ons	of	the	internal	variability.	For	
coupled	models,	the	control	runs	work	for	this	
purpose.	For	offline	simula(ons,	however,	they	
are	not	available.	
ª This	could	be	overcome	by	using	the	internal	
variability	from	coupled	models	or	crea(ng	
control	runs	by	driving	offline	models	with	
coupled	model	control	runs.	But	new	
assump(ons	and	tests	are	s(ll	needed,	especially	
for	the	study	of	terrestrial	ecosystem	dynamics.	
Poten8al	applica8ons:	
Vegeta(on	growth,	phenology,	above	ground	
biomass,	gross	primary	produc(on,	
evapotranspira(on,	and	river	flow	etc.				
	
	  Sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER) programs, and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, 

  LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Please contact maoj@ornl.gov for further information. 

Defini4on	and	applica4on	of	the	standard	D&A	
methodology�

Framework	of	the	applica4on	and	improvement	
of	the	D&A	for	the	terrestrial	ecosystem	study	

D&A	study	of	the	greening	in	the	northern	
extratropical	land	surface			

	
	
	
	

IPCC	D&A	defini8on:	
ª Detec8on	of	change	is	defined	as	the	process	
of	demonstra(ng	that	climate	has	changed	in	
some	defined	sta(s(cal	sense	without	providing	
a	reason	for	that	change.	An	iden(fied	change	is	
detected	in	observa(ons	if	its	likelihood	of	
occurrence	by	chance	due	to	internal	variability	
alone	is	determined	to	be	small.	
ª AAribu8on	of	causes	of	climate	change	is	the	
process	of	establishing	the	most	likely	causes	for	
the	detected	change	with	some	defined	level	of	
confidence.	
Op8mal	fingerprint	methods:		
	

			
		Y				à	observa(ons							
		xi			à	forcings	from	coupled	model	simula(ons	
		εIV	à	es(mated	internal	variability	from	models	
		β			à	scaling	factors	

ª Observa(ons	Y	are	regressed	onto	the	
expected	response	to	historical	changes	X.	
ª If	the	scaling	factor	β	for	a	par(cular	forcing	
and	its	confidence	interval	are	greater	than	0,	
then	the	forcing	is	detected.		
ª Once	a	forcing	is	detected,	it	can	be	a0ributed	
if	β	and	its	confidence	interval	include	1.	

Exis8ng	applica8ons:	
Temperature,	precipita(on,	extreme	events,	
atmospheric	moisture	content,	tropical	water	
cycle,	river	flow,	and	evapotranspira(on	etc.	
	
	

Results	from	opCmal	D&A	for	1982–2011	Cme	
series	of	LAI	anomalies	
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Figure 4: Results from optimal D&A for 1982–2011 time series of LAI anomalies.  390	
The D&A analysis was performed over land of the northern-extratropical latitudes on ensemble-391	
mean 1982–2011 time series of LAI anomalies. Response patterns were derived from CMIP5 392	
simulations accounting for both anthropogenic and natural forcings (ALL, in red), or greenhouse 393	
gas forcings only (GHG, in green), in a one-signal detection analysis. Observational average of 394	
LAI3g and GEOLAND2 was used as reference in the analysis. (a) Scaling factors (β—see text) 395	
best estimates and their 90% confidence intervals, (b) attributable trends over the 30-year-long 396	
time series, and (c) p-value of the residual consistency test (RCT). Results were obtained from a 397	
total least square (TLS) analysis using the multi-model mean or selected individual model 398	
responses. “Multi1” and “Multi3” refer to two different CMIP5 ensemble means (see text). 399	
Observational uncertainty was assessed using individual satellite-derived observations (LAI3g or 400	
GEOLAND2) regressed onto the “Multi1” response pattern.  401	
 402	
Methods	403	
Detection and attribution. Two distinct statistical approaches were used to detect and attribute 404	
the LAI changes in this study. The simple comparison of observed and simulated LAI trends (Fig. 405	
3) is based on a simple T-test, which is further discussed in the SI3. Then a more conventional 406	
D&A analysis is based on an optimal regression technique in which observations Y are regressed 407	
onto the expected response to historical forcing changes !∗ (i.e., ! =  !∗ ! +  !, where ε 408	
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(c)	
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A framework of detecting and attributing terrestrial ecosystem dynamics
Jiafu Mao1†, Whitney Forbes2, Daniel M. Ricciuto1, Mingzhou Jin2, Xiaoying Shi1,

Peter E. Thornton1, and Forrest M. Hoffman3

1Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA 
2Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, US

3Computer Science and Mathematics Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 

Overview: The statistical methods of detection and attribution (D&A) have been widely used in studies of climate change and quantifications of
causes underlying the multi-year changes. Their successful applications in the terrestrial ecosystems, however, are limited, mainly due to the lack of 
long-term and broad-scale observational records, and the lack of suitable simulations from both coupled and uncoupled models. We will overcome 
these challenges by proposing a framework that includes the development of effective D&A algorithms, the design of factorial land model 
ensemble simulations, and the assembling of observational and observation-based datasets at relevant scales. This framework is expected to 
increase the efficiency and our confidence in attributing observed changes in carbon and water fluxes, and vegetation activities to extensive natural 
and anthropogenic factors.

D&A for Terrestrial Ecosystem Variables: Why now?
Observational data are finally beginning to be long enough to complete formal 
D&A analysis studies.

D&A for Offline Model Framework: What is the point?
Using coupled models to generate simulations is very computationally 
cumbersome. Offline models run much more quickly which means a lower 
computational cost thus allowing for more simulations.

D&A Method Being Used Now for Offline TES Variables:
The linear regression method shown to the left includes an estimate for the 
internal variability. For coupled models, control runs are used for calculating this 
estimate. In offline models however, there is no such control run. Thus for 
offline models, the same linear regression formulation is used but without 𝜖ூ௏. 
If the regression model provides a good fit, this method is fine. But what if it 
does not? 

Potential Research Topics:
• River flow and runoff
• Leaf Area Index (LAI)
• Evapotranspiration
• Gross Primary Product (GPP)

Assembling of observational datasets?

Sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER) programs, and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, 
LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Please contact maoj@ornl.gov for further information.

IPCC definition and application of the standard 
D&A methodology

Framework of the improved D&A in the context 
of terrestrial dynamics

The D&A study of the greening in the northern 
extratropical land surface  

Definition of Detection and Attribution:
Detection of climate change is the process of demonstrating that climate has 
changed in some defined statistical sense, without providing a reason for that 
change. Attribution of causes of climate change is the process of establishing 
the most likely causes for the detected change with some defined level of 
confidence. (IPCC)
Optimal Fingerprinting as Linear Regression:

Y = ∑𝑥௜𝛽௜ + 𝜖ூ௏
𝑌 → observations 𝜖ூ௏ → estimated internal variability
𝑥௜’s and 𝛽௜’s → forcings and their respective scaling factors

Analysis of Results from Optimal Fingerprinting:
𝛽௜ > 0 → Forcing x௜ can be detected
After a forcing is detected, it can be attributed if 𝛽௜ and its confidence interval 
include 1.
The Residual Consistency Test (RCT) is used to determine if the model is a good 
fit by comparing the residuals to the estimated internal variability. 
Example using Near-Surface Air Temperature:
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Figure 2: Observed and simulated 1982–2011 time series of LAI anomalies. The 3-year mean 331�
growing season (April–October) LAI anomalies (m2/m2) over land of the northern-extratropical 332�
latitudes for both LAI3g and GEOLAND2 satellite-derived observations and CMIP5 simulations 333�
accounting for solely natural forcings (NAT) and greenhouse gas forcings (GHG) as well as 334�
CMIP5 simulations accounting for both anthropogenic and natural forcings (ALL). The ensemble 335�
mean for each set of forcings is given in blue, yellow, and red solid lines for NAT, GHG, and 336�
ALL, respectively. Individual satellite-derived observations are indicated with dashed black lines; 337�
the observational average is given with a bold solid black line. Blue, yellow, and red shading 338�
represent the 5%–95% confidence interval for NAT, GHG, and ALL ensembles, respectively 339�
(computed assuming a Gaussian distribution). The grey-hatched area represents the 5%–95% 340�
confidence interval for the range of variability for the centennial-long preindustrial unforced 341�
control simulations (CTL). 342�
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Observed�and�simulated�LAI�anomalies�

� OBS:��+0.143�(LAI3g),�+0.163�(GEOLAND2)�and�+0.153�m²/m²/30yr�(mean)�
� IV:������±0.066�m²/m²/30yr�
� NAT:��+0.017±0.054�m²/m²/30yr�
� ALL:���+0.133±0.089�m²/m²/30yr��
� GHG:�+0.129±0.120�m²/m²/30yr��
�
�
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Figure 3: Probability density function of LAI 1982–2011 30-year-long trends. Comparison of 380"
the observed trends (m2/m2/30yr) over land of the northern-extratropical latitudes (NEL) from 381"
both LAI3g and GEOLAND2 satellite-derived observations, against the Gaussian-fitted 382"
probability density function (pdf) of simulated trends from CMIP5 simulations accounting for 383"
unforced preindustrial control variability (CTL, in grey), solely natural forcings (NAT, in blue) 384"
and greenhouse gases forcings (GHG, in green) as well as CMIP5 simulations accounting for 385"
both anthropogenic and natural forcings (ALL, in red). Individual satellite-derived observations 386"
are indicated with long and short dashed vertical dashed black lines for LAI3g and GEOLAND2, 387"
respectively; the observational average is given with a bold solid black line. (a) comparison 388"
between trends as estimated from satellite-derived products and as simulated from both individual 389"
30-year segments taken from the preindustrial unforced control (CTL) simulations and historical 390"
simulations accounting for anthropogenic and natural forcings (ALL). (b) comparison between 391"
trends as estimated from satellite-derived products and as simulated from simulations accounting 392"
solely for natural forcings and greenhouse gases forcings (GHG). The dotted blue pdf 393"
corresponds to the NAT pdf but using a variance equal to that diagnosed from the CTL ensemble. 394"
 395"
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Figure 4: Results from optimal D&A for 1982–2011 time series of LAI anomalies.  390�
The D&A analysis was performed over land of the northern-extratropical latitudes on ensemble-391�
mean 1982–2011 time series of LAI anomalies. Response patterns were derived from CMIP5 392�
simulations accounting for both anthropogenic and natural forcings (ALL, in red), or greenhouse 393�
gas forcings only (GHG, in green), in a one-signal detection analysis. Observational average of 394�
LAI3g and GEOLAND2 was used as reference in the analysis. (a) Scaling factors (β—see text) 395�
best estimates and their 90% confidence intervals, (b) attributable trends over the 30-year-long 396�
time series, and (c) p-value of the residual consistency test (RCT). Results were obtained from a 397�
total least square (TLS) analysis using the multi-model mean or selected individual model 398�
responses. “Multi1” and “Multi3” refer to two different CMIP5 ensemble means (see text). 399�
Observational uncertainty was assessed using individual satellite-derived observations (LAI3g or 400�
GEOLAND2) regressed onto the “Multi1” response pattern.  401�
 402�
Methods�403�
Detection and attribution. Two distinct statistical approaches were used to detect and attribute 404�
the LAI changes in this study. The simple comparison of observed and simulated LAI trends (Fig. 405�
3) is based on a simple T-test, which is further discussed in the SI3. Then a more conventional 406�
D&A analysis is based on an optimal regression technique in which observations Y are regressed 407�
onto the expected response to historical forcing changes ! ∗ (i.e., !  =  ! ∗ !  +  ! , where ε 408�

(a)�

(b)�

(c)�

11�
�

�389�
Figure 4: Results from optimal D&A for 1982–2011 time series of LAI anomalies.  390�
The D&A analysis was performed over land of the northern-extratropical latitudes on ensemble-391�
mean 1982–2011 time series of LAI anomalies. Response patterns were derived from CMIP5 392�
simulations accounting for both anthropogenic and natural forcings (ALL, in red), or greenhouse 393�
gas forcings only (GHG, in green), in a one-signal detection analysis. Observational average of 394�
LAI3g and GEOLAND2 was used as reference in the analysis. (a) Scaling factors (β—see text) 395�
best estimates and their 90% confidence intervals, (b) attributable trends over the 30-year-long 396�
time series, and (c) p-value of the residual consistency test (RCT). Results were obtained from a 397�
total least square (TLS) analysis using the multi-model mean or selected individual model 398�
responses. “Multi1” and “Multi3” refer to two different CMIP5 ensemble means (see text). 399�
Observational uncertainty was assessed using individual satellite-derived observations (LAI3g or 400�
GEOLAND2) regressed onto the “Multi1” response pattern.  401�
 402�
Methods�403�
Detection and attribution. Two distinct statistical approaches were used to detect and attribute 404�
the LAI changes in this study. The simple comparison of observed and simulated LAI trends (Fig. 405�
3) is based on a simple T-test, which is further discussed in the SI3. Then a more conventional 406�
D&A analysis is based on an optimal regression technique in which observations Y are regressed 407�
onto the expected response to historical forcing changes ! ∗ (i.e., !  =  ! ∗ !  +  ! , where ε 408�

(a)�

(b)�

(c)�

-�

-�
ALL�

-�

-�
GHG�

MulC1:�only�one�simula( on�from�each�model;�MulC3:�models�with�at�least�three�members��

OBS (𝑌) – HadCRUT3

ANT (𝑥ଵ) – CNRM-CM5, 10 runs

NAT (𝑥ଶ) – CNRM-CM5, 6 runs

𝜖ூ௏ - estimated using 375 
samples of 110 years

Method – TLS/ROF, 𝑥௜ − 𝜖௦௨

	
	
	
	

Background:	
ª Significant	land	greening	in	the	northern-
extratropical	la(tudes	(NEL)	has	been	
documented	during	the	satellite	era.	
ª Discernable	human	impacts	on	the	Earth’s	
climate	system	(e.g.,	temperatures,	hydrology	
cycles	and	extreme	events)	have	been	revealed	
by	using	sta(s(cal	frameworks	of	D&A.		
ª These	impacts,	however,	were	not	previously	
iden(fied	on	the	NEL	greening	signal.	
	

	
	
	
	
	
	
	
Main	results: 

ª NEL	has	experienced	an	enhancement	of	
vegeta(on	ac(vity	for	the	past	3	decades.		
ª By	using	the	D&A	methods,	we	establish	that	
the	trend	of	strengthened	northern	vegeta(on	
greening	is	clearly	dis(nguishable	from	both	IV	
and	the	response	to	natural	forcings	alone.		
ª It	can	be	rigorously	a0ributed,	with	high	
sta(s(cal	confidence,	to	anthropogenic	forcings,	
par(cularly	to	rising	atmospheric	concentra(ons	
of	greenhouse	gases.	
	
	

Figure	2:	Results	from	op4mal	D&A	
for	1982–2011	4me	series	of	leaf	
area	index	(LAI)	anomalies.	The	D&A	
analysis	was	performed	over	the	NEL	on	ensemble-

mean	1982–2011	Bme	series	of	LAI	anomalies.	

Response	paFerns	were	derived	from	CMIP5	

simulaBons	accounBng	for	both	anthropogenic	and	

natural	forcings	(ALL,	in	red),	or	greenhouse	gas	

forcings	only	(GHG,	in	green),	in	a	one-signal	

detecBon	analysis.	ObservaBonal	average	of	LAI3g	

and	GEOLAND2	was	used	as	reference	in	the	analysis.	

(a)	Scaling	factors	(β)	best	esBmates	and	their	90%	

confidence	intervals,	and	(b)	aFributable	trends	over	

the	30-year-long	Bme	series.	Results	were	obtained	

from	a	total	least	square	(TLS)	analysis	using	the	

mulB-model	mean	or	selected	individual	model	

responses.	“MulB1”	and	“MulB3”	refer	to	two	

different	CMIP5	ensemble	means.	ObservaBonal	

uncertainty	was	assessed	using	individual	satellite-

derived	observaBons	(LAI3g	or	GEOLAND2)	regressed	

onto	the	“MulB1”	response	paFern.		

	

Observa(ons	and	
coupled/uncoupled	

model	outputs	

Preprocessed	
Data	

D&A	
Output	

Preprocessing	 D&A	package	

Ini(al	Prep:	
subset,	regrid,	

mask,	...	

Means:	
annual,	decadal,	
remove	temporal	

mean	

Project	onto	Spherical	
Harmonics:	

set	missing	to	0,	
regrid	to	Gaussian,	
project	onto	SH	

Finishing	Prep:	
reduce	to	desired	

trunca(on,	calculate	
ensemble	means	

Ini(al	Prep:	
weight	data	

corresponding	to	SH,	
dimension	reduc(on,	
regularizedcovariance	

matrix	for	IV	

Regression:	
OLS	or	TLS	

Polish	Output:	
confidence	intervals	
for	betas	and	RCT		Op#mal	fingerprint	methods	
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Process Evaluation: Heat Transfer with Snow 

𝐴𝑛𝑜𝑟𝑚 =
𝐴𝑎𝑖𝑟 − 𝐴𝑠𝑜𝑖𝑙

𝐴𝑎𝑖𝑟
 

Slater et al., in prep 
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Benchmarking specific processes 
of permafrost soil C formation 
 G., Hugelius, A. D. McGuire, T. J. Bohn, E. J. Burke, S. Chadburn, G. Chen, X. 
Chen, D. J. Hayes, E. E. Jafarov, C. D. Koven, S. Peng and K. M. Schaefer 

C density offset: 0.61 

Peat formation 

Cryoturbation 

1. Detailed pedon data (n: >500) 

2. Create adapted maps for benchmarking 

3. Spatial analyses against modelled soil C 



Ambiguous	Numerical	Coupling	of	Carbon	and	Nitrogen	Dynamics	is	
Fatal	for	Quality	Carbon-Climate	Feedback	Predic=ons	

Jinyun	Tang	and	William	J.	Riley	(LBNL)	

		
dS
dt

= FS ,input −FS ,uptake

Problem	
Nutrient	limita=on	is	
equivalent	to	ensuring	
posi=ve	solu=on	of	the	
equa=on	

Exis,ng	solu,on	
Actual	numerical	approaches	
diverge	and	result	in	different	
coupling	of	carbon-nitrogen	
dynamics	

Predic,ons	
They	lead	ACME	to	predict		
similar	vegeta=on	C	for	1990-2000.	

	
But	future	carbon	dynamics	
are	wildly	different.	

Proposed	improvements	
New	developments	should	explore	
§  How	to	ensure	a	robust	and	consistent	coupling	between	carbon	and	nutrient	

dynamics.	
§  How	the	quality	of	exis=ng	model	applica=ons	are	affected	by	inconsistent	CN	

coupling.		
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