What if ILAMB, LVT, et al were in a web application?

Gab Abramowitz (gabsun@gmail.com UNSW Australia)

All users could have equal access (no setup / local resources required)

All plots and meta-data could be viewed side-by-side in custom web pages
— Including comparison with results from other research groups internationally

MIPs could effectively become automatic AND ongoing

Provenance and meta data could be stored & data mined systematically
— Capture performance history throughout model development
— Aid reproducibility

API| could allow automatic testing /continuous integration (e.g. Jenkins)

Mirrored installations at HPC nodes could avoid data upload bottlenecks
while maintaining a single web presence

Ability to include new evaluation packages as they develop

How would it actually work? Come and take a look... Poster A.1



A.2 The Python-based ILAMB Benchmarking System

The package has been designed with the intention that users can
add their own benchmarks to the system. This is done by
implementing a custom version of what we call a confrontation.

Confrontation Permafrost
» The benchmark dataset - a » Poster will detail how this is
CF-compliant netCDF4 file done by an example.

» The analysis routines which
extract comparable
quantities from the model
results, perform analysis,
render output images, and
prepare the HTML output.




Emergent Constraint Developed from CMIP5 ESMs

An emergent constraint based on
carbon inventories was applied to
constrain future atmospheric
CO> projections from CMIP5
ESMs.
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Hoffman, Forrest M., James T. Randerson, Vivek K. Arora, Qing Bao, Patricia Cadule, Duoying Ji, Chris D. Jones, Michio Kawamiya,

» Much of the
model-to-model variation
in projected CO7 during
the 215 century is tied to
biases that existed during
the observational era.

» Model differences in the
representation of
concetration—carbon
feedbacks and other
slowly changing carbon
cycle processes appear to
be the primary driver of
this variability.

> Range of temperature
increases at 2100 slightly
reduced, from 5.1 +2.2°C
for the full ensemble, to
5.0+ 1.9°C after applying
the emergent constraint.
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Best estimate using Mauna Loa CO»

At 2060: 600 £ 14 ppm, 21 ppm
below the multi-model mean
At 2100: 947 £ 35 ppm, 32 ppm
below the multi-model mean

Samar Khatiwala, Keith Lindsay, Atsushi Obata, Elena Shevliakova, Katharina D. Six, Jerry F. Tjiputra, Evgeny M. Volodin, and

Tongwen Wu. February 2014. “Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models.”

J. Geophys. Res. Biogeosci., 119(2):141-162. doi:10.1002/2013JG002381.
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Hydrological Metrics for Earth System Modeling
Hong-Yi Li, Wei Wang, L. Ruby Leung (PNNL)
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*» Natural watersheds exhibit emergent linkages among annual mean and
inter- and intra-annual variability of streamflow and floods

s These relationships arising from interconnections between different
hydrological processes can be used as metrics for hydrologic simulations

*» Can Earth system models reproduce these linkages, and the underlying

process interconnections?




Reducing the uncertainty in the projection of the terrestrial carbon cycle by
fusing models with remote sensing data gpgoxsiruen V)
W‘lSC‘O‘NSlN UNIVERSITY

NATIONAL LABORATORY StonyBrook

Shawn Serbin?, Toni Viskari*?, Phil Townsend?, Alexey Shiklomanov*, Mike Dietze* University =~ s oo mmion

ED gives us 1-D Canopy Information
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Benchmarking C cycle retrievals: an example using carbon use efficienc

Mathew Williams, Jean-Frangois Exbrayat, A. Anthony Bloom, T. Luke Smallman, Chris Jones NV~

\)N‘
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Earth Observation
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THE UNIVERSITY ofEDINBURG]—[
School of GeoSciences

Global carbon cycle modelling suffers from a
lack of observations and systematic evaluation
Data assimilation approaches can constrain
simple models using multiple data-streams
CARDAMOM produces potentially very useful
information about relationships between

carbon cycle variables or processes

Models have never been tested in this way
before and there is a real gap for this type of

process-based evaluation
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GPP = Gross primary production

Ra = Autotrophic respiration
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Vegetation dynamics benchmarking based on forest inventory data

Daniel Johnson!, Chonggang Xu?, Rosie Fisher?, Ryan Knox?, Stuart Davis?*, Chris Woodall®, Nate McDowell?

1: Los Alamos National Laboratory; 2: National Center for Atmospheric Research; 3: Lawrence Berkeley National Laboratory; 4: Smithsonian Institution; 5: USFS,

1. Demographic metrics: Tree mortality rate based FIA 2. Successional trajectories
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FREE AIR CO; ENRICHMENT (FACE) MODEL-DATA SYNTHESIS

- Aim to examine how well our ecosystem models replicate
observed responses to a step change in CO, (1 ~40 %).

p— ——

Duke, North Carolina

- But not to find a best model, trying to avoid metrics...

- We applied 11 process based models (C & C-N) to the Duke and
Oak Ridge FACE experiments.



Decadal trends in the seasonal-cycle amplitude of terrestrial CO,
exchange resulting from the ensemble of terrestrial biosphere models

North American Carbon Program

YRS  Akihiko Ito and MsTMIP model groups, Tellus B (in press)

- Increase of seasonal-cycle amplitude (SCA) of atmosphere—ecosystem CO, exchange
- Comparison of 15 models and factorial experiments (climate, CO,, land-use, and N)
- Considerable impact of elevated CO, (left) and inter-model variability (right)
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Height—Structu red Vegetation and the Carbon Cycle
in the NASA GISS Earth System Model/
Ent Terrestrial Biosphere Model
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Nancy Y. Kiang?!, Igor Aleinov?, Wenge Ni-Meister3, Wenze Yang’, Yeonjoo Kim#, Crystal
Schaaf®, Anastasia Romanou?, Qingsong Sun>, Tian Yao®, Feng Zhao’, Zhuosen Wang’

INASA Goddard Institute for Space Studies, 2Cqumbla University, 3CUNY Hunter College, *Yonsei University, >°UMass-Boston,
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From the leaf to the land surface: using data and
models to improve (a single) land model processes

Nick Smith', Danica Lombardozzi2, & Jeff Dukes'
Purdue University, IN, USA; 2National Center for Atmospheric Research, CO, USA
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The Model-Data Integration Framework for NASA's Arctic Boreal Vulnerability Experiment (ABoVE)

Eric J. Stofferahn'*, Joshua B. Fisher?, Daniel J. Hayes3, Deborah N. Huntzinger?, Christopher R. Schwalm>
1 —Jet Propulsion Laboratory, California Institute of Technology; 2 — Jet Propulsion Laboratory; 3 — University of Maine; 4 — Northern Arizona University; 5 — Woods Hole Research Center
* - Corresponding Author: ericstofferahn@gmail.com
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ECMWEF experiments assimilate separately:

=CTRL (Operational): Tair 2m & RH acquired in situ
observations from weather stations

= EXPT (Ongoing research): SMOS L-band TB.
Currently showing degraded Tair for the 24 hr
forecast over the Central US

SOIL MOISTURE ANALYSIS (0-7cm)
ECMWF experiments vs. 273 ground stations:
SCAN, USCRN, lowa and Oklahoma ‘super sites’.
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» Soil moisture DA:

Surface layer: Improvement in temporal correlation
and little change in soil moisture bias (CTRL Vs EXP)
Total water: significant regional biases

Diagnosing the downstream performance of the European Center for Meteorological Weather Forecasting

(ECMWF) land data assimilation system.
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ECMWEF ET forecasts vs. 31 in situ locations from
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obs4MIPs

AMIP
https://www.earthsystemcog.org/projects/obs4mips Obs >

« A Project for identifying, documenting and Target Quantities
disseminating observations for climate
model evaluation
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ZAS Global 0.5 deg Hourly Land Surface 2m Air

Who should come to our poster?

Temperature Datasets for Model Evaluations
Xubin Zeng (University of Arizona), Aihui Wang

If you compare earth system model (ESM) monthly mean T2m #2
(averaged over all time steps) over land with reanalysis datasetsﬁl -
(because reanalysis T2m is not good enough) :

If you compare ESM monthly mean T2m with global in situ
datasets (e.g., CRU) (because you compare “apple” with
“orange”)

If you do the right thing by saving monthly averaged diurnal
cycle of T2m from models but compare its range with CRU
diurnal temperature range DTR = Tx — Tn (because, again, :
you compare “guava’” with “pomegranate™) e
If you adjust reanalysis T2m using CRU Tm = (Tx + Tn)/2 to 3=
drive your land surface models (because this does not adjust the

diurnal temperature range)

e
5

Bottom line: we have the new global datasets to help you solve

these problems.



Performance of the new soil carbon module in JSBACH
D.Goll, V. Brovkin, T. Raddatz, J. Liski, and T. Thum

soil organic carbon density in the top 1 m kg m-2
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A benchmark and diagnostic of climatological temperature

control on soil carbon turnover
C. D. Koven?, G. Hugelius?, D. M. Lawrence3, W. Wieder?

(1) Lawrence Berkeley Lab; (2) Stockholm University; (3) NCAR
At our poster, we will:

1 1T 1 7 11 T — 1 1 T T

-30

20  -10 0 10 20 30
Mean Air Temperature (°C)

1.

Explain how we constructed this
figure and why we think it is useful.
Derive a “climatological Q,,” from this
relationship and show that it
separates the world into “emergent”
and “non-emergent” regimes based
on whether or not the instantaneous
and climatological Q,,s agree.

Show a simplified scaling theory that
explains the change in sensitivity from
temperate to cold climates.
Benchmark several CMIP5 (all linear
ODE-based) soil carbon models to
show that they all have problems.
Benchmark some newer soil carbon
model approaches, including a linear
PDE-based model (CLM4.5) and a
nonlinear ODE-based model (MIMICS)
that show some promise.



A framework of detecting and attributing

terrestrial ecosystem dynamics

£ U.S. DEPARTMENT OF OﬁiCe Of

EN ERGY Science

Optimal D&A results for 1982-2011 time
series of LAl anomalies

CLIMATE CHANGE :
SCIENCE INSTITUTE Jiafu Mao and coauthors

OAK RIDGE NATIONAL LABORATORY

Optimal fingerprint methods

B as
Y = )x;f6; + €y =
Y - observations i O°

C

x; -2 forcings from coupled model simulations
g,, =2 estimated internal variability from models
8 -> scaling factors

v

LAI Trend (" /m” /30y

Diagram for the application of the D&A methods ¢
onto the terrestrial dynamics

Observations and
coupled/uncoupled

model outputs

Preprocessed
Data

DA package

: : Initial Prep:
Means: Project onto Spherical Finishing Prep: V\rl‘cleti-lgaht crl:ta
Initial Prep: ' Harmonics: '

: annual, decadal, e reduce to desired corresponding to SH, Regression:
subset, regrid, set missing to 0, ) . p ; :
remove temporal : : truncation, calculate dimension reduction, OLS or TLS
mask, ... regrid to Gaussian,

mean . ensemble means regularizedcovariance
project onto SH :
matrix for IV

Polish Output:
confidence intervals

for betas and RCT

Sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER) programs, and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle,
LLC, for the U.S. Department of Energy under contract DE-AC05-000R22725. Please contact maoj@ornl.gov for further information.



JSBACH performance in comparison to observations and other models

T. Raddatz, V. Brovkin, A. Loew, S. Hagemann, C. Reick, D. Dalmonech, and S. Zaehle
MPI for Meteorology & Biogeochemistry

Surface albedo (JSBACH vs MODIS)

Vegetation greennees

V-LTT: vegetation trend 1982-1991 V-LTT: vegetation trend 1998-2006
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Brovkin et al., 2013, J Adv Model Earth Syst

More on the poster: evaluation of vegetation cover, carbon, hydrology



Process Evaluation: Heat Transfer with Snow
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Benchmarking N/P competition

(Qing Zhu & William J. Riley LBNL)

E | [---ECA ensemble mean (CT5)
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Short-term competition (hours - days):
Equilibrium Chemistry Approximation
vs. Relative Demand

vs. Microbes Outcompete Plants

Long-term competition (~ years):
Functional Balance Approach + ECA
vs. Fixed allocation + RD

vs. Dynamic allocation + ECA
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Benchmarking specific processes
of permafrost soil C formation

G., Hugelius, A. D. McGuire, T. J. Bohn, E. J. Burke, S. Chadburn, G. Chen, X.
Chen, D. J. Hayes, E. E. Jafarov, C. D. Koven, S. Peng and K. M. Schaefer

2. Create adapted maps for benchmarking
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3. Spatial analyses against modelled soil C
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Ambiguous Numerical Coupling of Carbon and Nitrogen Dynamics is

Fatal for Quality Carbon-Climate Feedback Predictions
Jinyun Tang and William J. Riley (LBNL)

Problem Predictions

Nutrient limitation is They lead ACME to predict But future carbon dynamics

equivalent to ensuring similar vegetation C for 1990-2000. are wildly different.
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Proposed |mprovements

New developments should explore

= How to ensure a robust and consistent coupling between carbon and nutrient
dynamics.

= How the quality of existing model applications are affected by inconsistent CN
coupling.
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