Evaluating the simulations of global nutrient cycles: available observations and challenges

Ying-Ping Wang CSIRO Oceans and Atmosphere Australia With contributions from Benjamin Houlton, Edith Bai

Current status of iLAMB on nutrient

- iLAMB does not include any nutrient data for model benchmarking yet;
- Only one model including N cycle was used for AR5;
- Few global land models with nutrient cycles (<6 for N and 3 for N and P);
- No consistent benchmarking available across all modelling groups on nutrient cycles

Terrestrial N cycle

Major inputs (Tg N /year)

	Preindustrial (1900)	Present (ca 2000)
N deposition	22	63
Lightning	5	5
N fixation	100 (60-150)	120 (60-200)
N weathering	22	22
Fertilizer	1	83
Total	150	293

N Fate (Tg N/year)

(* calculated as residual)

	Preindustrial (1900)	Present (2000)
Denitrification	65	124
Ammonia emission	10	60
Leaching	30	50
Aerial transport to ocean	6	48
Soil accumulation	27*	11*
Total	150	293

Global phosphorus cycle

Input (Tg P/yr):

Deposition: 2.7 Weathering:1.1 Fertilizer:14

Fate: Leaching: >2.0 (18-30) Fire+wind:1.8 Soil: 2

Key datasets for evaluating nutrient cycles

In addition to dataset used for evaluating carbon cycles

- Latitudinal variations of leaf C:N:P ratios
- Soil N and P pool sizes, soil δ^{15} N
- Global nutrient fluxes from land to ocean
- Long term (>10 years) field experiments

Latitudinal variations: evidence of the broad geographic pattern of nutrient limitation

Wang, Law and Pak et al. 2010, Biogeosciences

Soil δ^{15} N data and gaseous loss

Source: Houlton, Marklein and Bai 2015, Nature Climate Change

A nitrogen isotope (¹⁵N) constraint on N effluxes (Houlton, Bai and Alison 2015)

Basic theory: $f_{gas} + f_{NH3} + f_L = 1$ $\delta^{15}N_{soil} = \delta^{15}N_{input} + \varepsilon_{gas}f_{gas} + \varepsilon_{NH3}f_{NH3} + \varepsilon_L f_L$

*For unmanaged land with negligible NH*₃ *emissions*

$$f_{gas} = \frac{\delta^{15} N_{soil} - \delta^{15} N_{input} - \varepsilon_L}{\varepsilon_{gas} - \varepsilon_L}$$

Soil N and P data

Source: Batjes (2009); Yang et al. (2013)

Microbial C:N:P

Source: Xu et al. 2012

N and P losses from land (Tg N or P/year)

Species	Ν	Ρ
Dissolved inorganic	18.9	1.4
Dissolved organic	10.8	0.6
Particulate matter	13.5	6.6
Total	43.2	8.6

Source: Kroeze, Bouwman and Seitzinger 2012

Long term fertilizing experiments with some detailed process data (>10 years)

- Tropical forest:
 - Hawaii chronosequence (*different soil substrates*, evidence for Walker and Syer's hypothesis)
 - Dinghushan (*successional gradient*, evidence for limiting nutrient shift)
 - Gigante experiment (1998-2007) (no changes in soil carbon and N after decades of N, P or K addition)
- Temperate forest: Harvard forest (fertilizer addition reduced microbial biomass)
- Boreal forest: Flakliden (*interactions with high CO₂ and warming*, no growth response unless N is added)

Key results (responses to N addition)

Challenges in constraining nutrient cycles

- Large uncertainties in the inputs, and some inputs are missing
- Losses from dissolved organic and particulate matters are not represented in most models, a significant issue for P
- No observation-based global data product of mineralization, uptake; denitrification loss
- Large variations of fluxes and pool sizes in time and space

Large uncertainties of inputs: N fixation

For the mass weighted globally mean $\delta^{15}N_{soil}$ is 5.8 ‰, $\delta^{15}N_{input} = -1\%$; $\varepsilon_{gas} = -15\%$, $\varepsilon_{l} = 0\%$

We have:
$$f_{gas} = 0.45$$

Given N_{dep} =22 Tg N/year in 1900 If N_{gas} = 65 Tg N/year, N_{fix} =42 Tg N/year If N_1 =35 Tg N/year, N_{fix} = 122 Tg N/year

Other inputs: N-rock weathering (g N m⁻² yr⁻¹)

Globally rock-weathering of N-rich rock provides 21 Tg N/year to land ecosystems!

Source: Morford, Houlton and Dahlgren in press

Large intra-PFT variations of C:N:P of plant tissues

Source: Ian Wright and Peter Reich

Nutrient-data for iLAMB

- Identify key experimental dataset for model evaluation
- Add nutrient data to iLAMB
- Organize nutrient MIPs

Two international workshops in 2016

- 23-25 May 2016, Townsend, USA, P modelmeasurement workshop
- 15-17 June 2016, Yangling, China, Nutrient limitation on land: how accurate are our global land models?