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Background and motivation 

Most land models in Earth System Models include numerous sub-

models, each representing key processes with mathematical 

equations and model parameters.  

 

Quantifying parametric uncertainties and optimizing the parameter 

values may improve model skill in capturing observed behaviors.  

 

The land models are highly computationally expensive.  It is crucial to 

take advantage of advances in applied mathematics (e.g., efficient 

sampling and surrogate model construction) and high performance 

computing (e.g., big data analytics and parallel algorithms). 
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An Uncertainty Quantification Framework for  

CLM4SP hydrologic parameters 
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Parameterization 
- parameters of interest 

Closed-form Prior probability 
density functions (pdfs) 

Quasi 
Monte 
Carlo 

sampling 

Realizations of parameter sets 

Output responses:  
• Latent heat fluxes (LH) 
• Sensible heat fluxes (SH) 
• Total runoff  

CLM forward 
modeling 

Calculate selected metrics for  
• Global sensitivity analysis; 
• Parameter screening; 
• Assessing parameter transferability 

 Surrogate construction 
 Bayesian inversion using 

surrogates/real model 



Sensitivity of Simulated Surface Fluxes and 

Runoff to Hydrologic Parameters 
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Larger sensitivity to 

parameters of 

subsurface processes 

Hou et al. 2012, JGR; Huang et al., 2013, JHM;  

 CLM4-SP simulated water/energy 
fluxes show the largest sensitivity 
to subsurface runoff generation 
parameters.  

 Simulations using default 
parameters (red) are significantly 
different from observations at 
ARM SGP (blue) and a co-located 
MOPEX site (green).  

 With the observations falling 
within the range of parameter 
uncertainties, it is feasible to use 
model inversion to improve 
water/energy simulations. 

		



Inverse Modeling of Hydrologic Parameters 

using Surface Flux and Runoff Observations  
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improve CLM simulation of energy fluxes and runoff 

A Markov Chain Monte Carlo 
(MCMC) – Bayesian 
inversion algorithm was  
implemented to CLM4; 

We evaluated the effects of 
surface flux and streamflow 
observations on the 
inversion results and 
compare their consistency 
and reliability using both 
monthly and daily 
observations; 

Our results suggest that 
parameter inversion of 
CLM4SP is possible, at least 
at the site level; 

Sun et al., 2013, HESS 



Classification of Hydrological Parameter Sensitivity and 

Evaluation of Parameter Transferability across 431 US Basins 

 Use parameter sensitivity 
patterns/ attributes, together 
with climate and soil conditions 
to classify the basins. The 
classification yields six classes 
with unique sensitivity of 
streamflow simulations to 
variations in hydrological  
parameters.  

 By grouping a large number 
basins into a reasonably small 
number of classes with similar 
sensitivity behaviors, the same 
optimization strategy can be 
used within each class. Model 
optimization effort can be 
further reduced given the 
parameter similarity and 
transferability.  
June 17, 2016 Ren et al., J Hydrology, 2016 

Sensitivity-based classification of the 431 MOPEX Basins basins 

Wavelet decomposition to separate signal/noise for calibration 



Surrogate-based MCMC-Bayesian Inversion : 

Case Studies at Flux Tower Sites  

Assessed the feasibility of 

applying a Bayesian calibration 

technique in combination with 

surrogates to estimate CLM4SP 

parameters; 

Simulated LH from CLM using the 

calibrated parameters are 

generally improved at all sites; 

The calibration method also 

results in credibility bounds 

around the simulated mean fluxes 

which bracket the measured data; 
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Ray et al., SIAM-JUQ, 2015 
Huang et al., JGR, in revision 

The computational cost is significantly reduced when surrogates are used. 

On the other hand, a surrogate-based calibration procedure is intrinsically 

subject to errors as a result of approximating a complex model using 

simplified functions. 



Scalable adaptive chain ensemble sampling (SACHES): 
a parallel MCMC method for calibrating computationally expensive models 

Problems with MCMC 

Sampling cost: Many samples needed; each sample leads to 1 model 

evaluation 

Poor proposals: If proposal distribution is sub-optimal, most proposals will 

be rejected 

Bad start: What’s a good place to start 

Solutions: 

Sampling cost: Distribute sampling over m chains 

Poor proposals: adaptive Metropolis-Hasting sampling 

Periodically, use samples collected to compute a multivariate Gaussian 

approximation to f(: | :) 

Inflate its variance and use it as a proposal 

Only works if you have some samples to work with 

Bad start: Have m chains start from an over-dispersed set of p0 
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SACHES: Addressing sampling cost 
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Generation i 

Communicate 

samples &  

recompute 

proposal 

distribution 

incrementally 

Chains run 

asynchro- 

nously 
Each generation 

consists of 

1. proposal 

generation 

2. model run 

3. accept/reject of 

proposal 



SACHES: Addressing bad starts  

When there aren’t enough samples, how to make a good proposal 

distribution? 

Use genetic algorithm (Differential Evolution) to collect a few good samples 

Use parallel and snooker updates to construct proposals 

 

 

 

 

 

 

 

 

Switch to adaptive Metropolis-Hastings when we have a few good samples  
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Parallel Snooker 



SACHES: CLM calibration with real LH observations 

Calibrate: Fdrai, log(Qdm), b 

Use observations from ARM/SGS site 

for 2003 

Observations are latent heat fluxes 

Averaged to their monthly value 
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Evolution of the chains 
 Predictions using posteriors 

The likelihood is flat near the minimum 

error point, hard to converge: 

The chain for b has converged 

The other chains are still wandering 

Far from convergence @ 600 generations 

Even so, simulated LH is improved based 

on the posterior parameters 
 Ray et al., in preparation 



SACHES: inverting soil moisture field using data 

from cross-hole ground penetrating radar 
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Monitoring soil moisture variations using tomographic 

ground penetrating radar (GPR) travel time data 

Tomographic GPR is a borehole-based geophysical 

imaging technique.  

It involves transmitting an electromagnetic (EM) pulse from 

a source in one borehole and recording the arrival of EM 

energy at a receiver position in a separate borehole.  

Inversion of the first arrival times of the EM energy is used 

to estimate the velocity and the dielectric permittivity (𝜖) 

distribution between the boreholes.  

Use of pilot points to model the dielectric permittivity field 

Challenges exist in the inversion of GPR tomographic data 

for handling non-uniqueness and high-dimensionality of 

unknowns.  

Explain pilot point random field model. 

Forward problem is linear  y = travel time, x=permittivity 

field 

Reconstruction:  estimating a random field, show random 

field realizations 

 
Bao et al., mathematical Geoscience, submitted; 
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