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Two aspects to consider 

 From iLAMB paper (Luo et al., 2012): 

 Effective benchmarks should draw upon a broad set of 

independent observations spanning multiple temporal and 

spatial scales. 

 Calibration is an integral part of benchmarking. 

 Difficulties: 

 Computationally demanding to simulate at observed 

temporal and spatial scales.  

 Proper orthogonal decomposition (PODM) method 

 Repeated evaluations during calibration and UQ analysis 

compound the computational cost. 

 Implicit sampling and surrogate models. 

 

 



Surrogate models 

 Reduced order models: 

 Efficient surrogates to expensive numerical models. 

 Numerical/statistical models. 

 Sampling-based construction: typically based on results 

from simulation.  

 Proper orthogonal decomposition mapping method 

 Utilizes solutions from coarse-resolution models to 

reconstruct solutions from fine-resolution models. 

 Minimal changes in existing codes. 

 Combination of POD and responses surface methods. 

 E.g. GPR, gPCE, HDMR. 

 

 



Pau et al., WRR, 52, 791-812, 2016. 

Pau et al., Geosci. Model Dev., 7, 2091-2105, 2014. 

Predict high-resolution NPP of a 
watershed model 

 Clinton River Watershed: 

 Large seasonal temperature change 

(22°C/summer and -3°C/winter). 

 Heterogeneous land covers. 

 Simulated by CLM+PAWS.  

 No fitting of coarse model’s 

parameters to fine model solution.  

 PODM model’s training data: 

 coarse (7km) and fine (0.2km) 

resolution. 

 daily solutions from 2001-2005. 

 



Predict high-resolution NPP of a 
watershed model 
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 Good prediction of daily fine scale solution 

for 2006-2009 using coarse model. 

 But what is good?  

 We used the Kolmogorov-Smirnov measure.  

 Potential use of diagnostics in CODA R package. 

 Relevant for statistical benchmarking against fine-

scale observations. 

 

 



Quantifying impacts of climate 
change on Sierra Nevada 

 Training data:  

Monthly air temperature from 

climate change scenarios (5 

different GCM models), 

dynamically downscaled WRF 

solutions of Sierra Nevada. 
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Figure 1. (a) Topography (meters) and model setup with three one-way nested WRF domains 976 

(D1, D2, and D3) at resolutions of 27, 9, and 3 km.  (b) Innermost domain (D3) topography.  977 
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 Leave-one-out validation: 

average MAE error = 0.4°C. 



3

4

5

6

7

0.8

1

1.2

1.4

1.6

1.8

M
EA

N
 

S
TD

 

J   F   M   A   M   J   J   A   S   O  N   D 

Quantifying impacts of climate 
change on Sierra Nevada 

 Impact of climate change on 

high-resolution temperature 

of the Sierra Nevada: 

PODM model rapidly 

determines the temperature 

based on RCP8.5 results 

from 35 different GCMs.  

 
The standard deviations are greater 

than the error of the PODM model: the 

accuracy of the PODM model is 

sufficient for statistical analysis. 

Resampling the results from the 35 GCMs allows rapid 

reconstruction of the PDF at point locations, potentially 

at resolution consistent with observations. 



Perspectives 

 Use of ROM in uncertainty analysis 

 Efficient high resolution reconstruction allows uncertainties to 

be quantified at scales consistent with the observations. 

 Error estimation and robust validation are needed, similar to 

a physics-based model. 

 Construction of ROM 

 ROM must be paired with appropriate UQ methods to allow 

efficient sampling and thus reduce computational overhead. 

 High-resolution reconstruction is still a challenging problem: 

appropriate evaluation criteria consistent with the application 

ensure the ROM has the required accuracy. 



Bayesian calibration 

 Implicit sampling: a 

particle filtering technique 

 deterministic optimization + 

importance sampling 

techniques. 

 Work well with ROM. 

 Constrained parameter 

space for training dataset 

 Highly parallelizable. 

 Construct ROM for outputs, 

not likelihood function. 

 

 

Implemented within Agni/ASCEM 



 A more uncertain problem. 

 Accurate characterizations of 

posterior parameter 

distributions is needed for 

accurate uncertainty 

quantification.  



Thank you.   



ROM Approaches 

Proper Orthogonal Decomposition 

(POD) 

Empirical Interpolation Procedure 

(EIP) 

Response surface approaches 

Gaussian process regression (GPR) 

High dimensional model reduction 

(HDMR) 

Ingredients Combined 

Coarse grid model 

Simplified physics model 

POD Mapping method (POD-MM) 

Gappy POD (GPOD) 

POD+GPR 



pROME 
Parallel Reduced Order Models for Earth 

Systems 

 

Large dataset: Need parallel 

processing. 
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