

CLIMATE CHANGE SCIENCE INSTITUTE Oak Ridge National Laboratory

Uncertainty quantification in the ACME land model

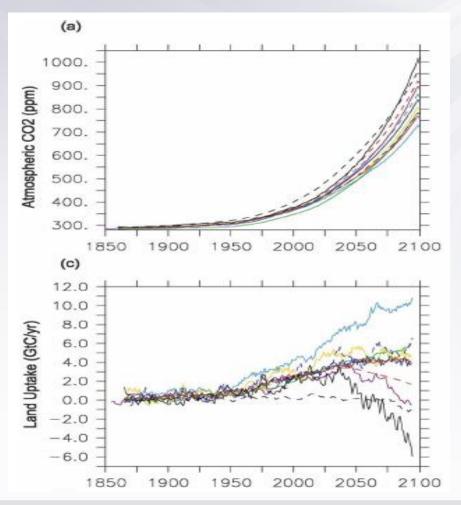
Daniel M. Ricciuto, Khachik Sargsyan, Dan Lu, Jiafu Mao, Peter Thornton

May 18th, 2016 ILAMB workshop



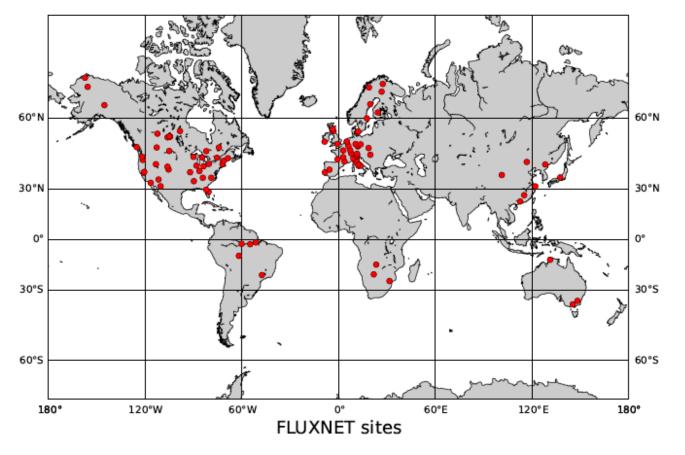
Evaluating land model uncertainty

- Traditionally, uncertainty has been estimated using multimodel comparisons
- Large uncertainties about future carbon flux
- Hard to distinguish various types of uncertainty (e.g. structural vs. parametric)
- Within-model uncertainty not well characterized
- Need for formal UQ methods



Friedlingstein et al 2006

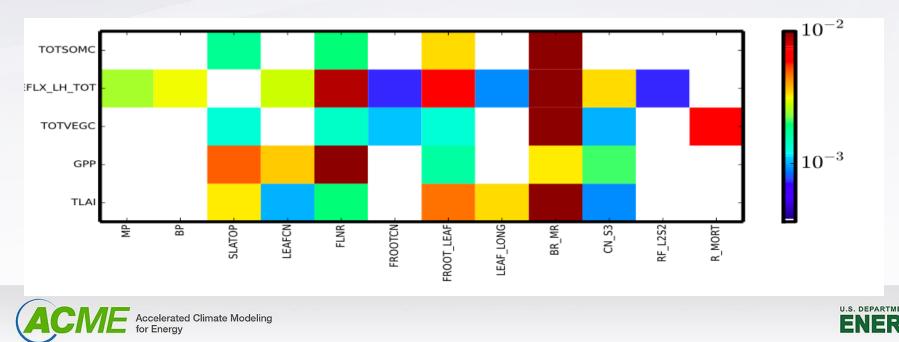
FLUXNET sensitivity analysis – ALM-CN



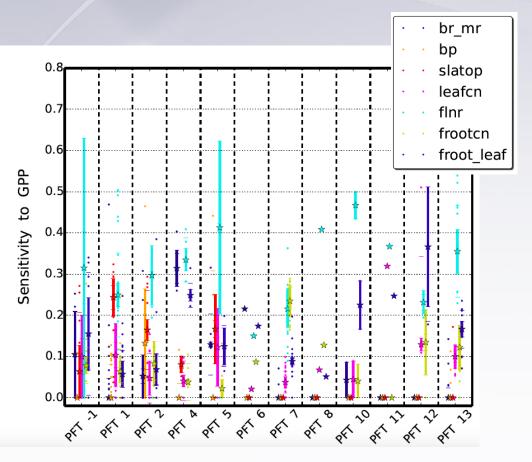
- 96 FLUXNET sites covering major biomes and plant functional types
- 68 input parameters varied over uniform prior ranges
- Sensitivity analysis with Bayesian Compressive Sensing (Sargsyan et al., 2014)
- Site-specific PFT, but reanalysis forcings/soil properties

Interpreting the results

- Variation in sensitivity with quantity of interest
 - Steady state fluxes and pools
 - Top 10-15 parameters vary, but remaining 50 are always insensitive
 - Maintenance respiration base rate (br_mr)
 - R_mort (mortality) only important for total vegetation biomass
 - Indirect controls: br_mr affects total SOM carbon

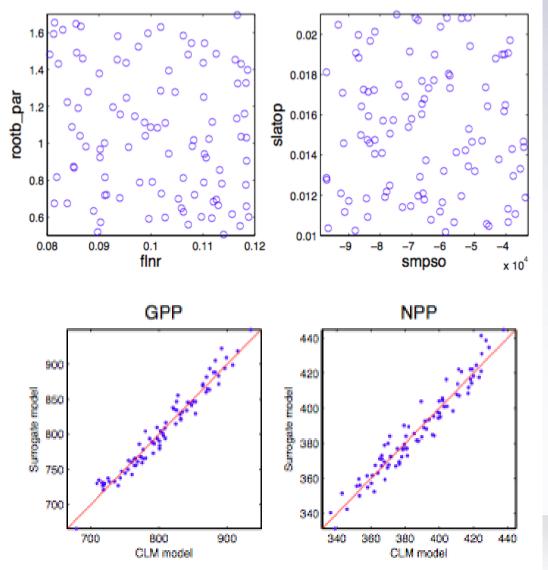


Sensitivity analysis: Interpreting the results



- Some parameters are sensitive everywhere (flnr)
- Maintenance respiration base rate (br_mr) is critically important in tropical rainforests but not in other ecosystems.
- Relative consistence within PFTs
- Can provide guidance about where specific measurements or data are more valuable
- Reduction of parameter space for optimization

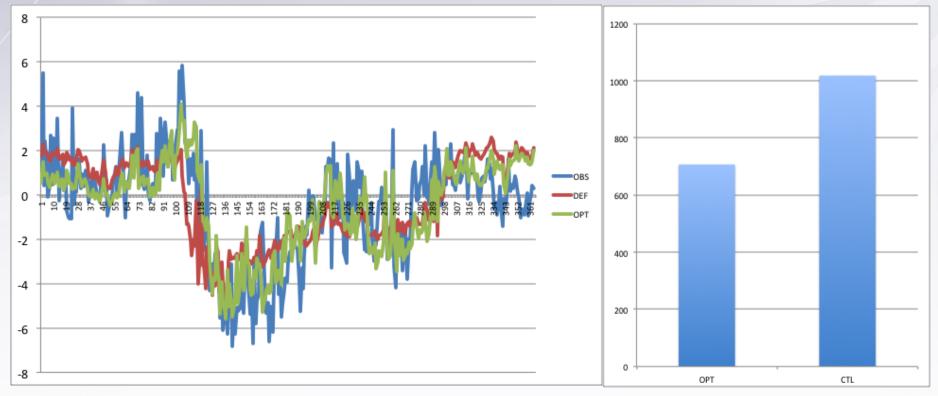
Surrogate modeling applications



- Goal: Model calibration
- CLM/ALM are too slow for methods to estimate posterior uncertainties (MCMC)
- Evaluate model at given sample points
- Construct a set of basis functions to represent the full model for a subset of outputs
- Additional uncertainty introduced, but high accuracy is achievable
- Combine with optimization approaches (e.g. GA)

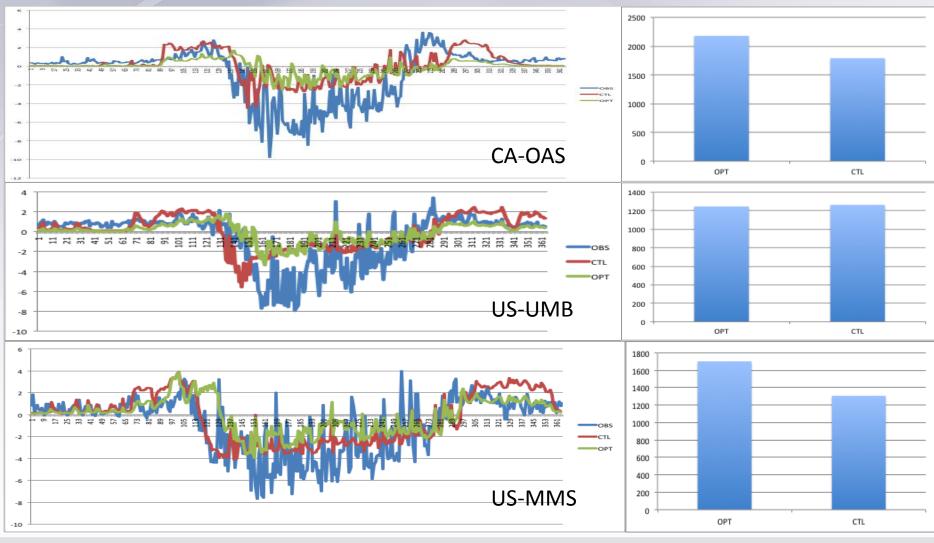
Model optimization and benchmarking

- Example at US-MOz flux site
- Optimized ALM using 2006 NEE data, 30% RMSE reduction
- 1928-2006 simulation, 14 parameters (GA, full model)



Model optimization and benchmarking

Default "PFT" parameters (benchmark) vs. optimized parameters



Accelerated Climate Modeling for Energy

Multivariate optimization example: CLM at PiTS experimental site

- Pre-treatment observations of variables below
- A single spin-up and transient simulation through 2002 (default PFT-level parameters)
- Ensemble simulations 2002-2012
- 100 iterations of genetic algorithm
- Mao et al (2015)
- Can we increase predictive skill at other sites?

State variable	Units	Observed	PRE_STD	PRE_OPT	Bias reduction (%)
Leaf carbon	gCm ⁻²	[182, 221]	419	209	96.55
Stem carbon	$\rm gCm^{-2}$	[973, 1220]	1455	1027	88.49
Root carbon	$\rm gCm^{-2}$	488	859	408	78.44
Aboveground biomass	gCm^{-3}	[728, 1758]	1645	1236	98.26
δ^{13} C leaf	‰	-27.99	-27.38	-27.49	18.03
δ^{13} C phloem	‰	-28.48	-27.38	-27.50	10.91
δ^{13} C Root	‰	-28.86	-27.36	-27.39	2.13
Sap flow	mm day $^{-1}$	2.40	3.70	2.37	97.85
Soil respiration	μ mol m ⁻² s ⁻¹	3.63	5.20	3.26	76.58

UQ, optimization and benchmarking

- Sensitivity analysis: Determining which model parameters are sensitive for given benchmarks
 - ALM: Coherence of sensitivity within and among PFTs
 - Multi-model application will be useful (e.g. PecAn)
- Ensemble benchmarking
 - Consider parameter, driver, and structural uncertainty (compare PDFs of scores rather than individual numbers)
- Model calibration: Improving predictions
 - Use of a single dataset probably won't increase predictive skill
 - Multivariate optimization, use of emergent constraints
 - Independent data must be reserved for validation/benchmarking
 - Complex LSMs require more sophisticated approaches
 - Opportunity for standardization of workflows

ACCINE Accelerated Climate Modeling for Energy

