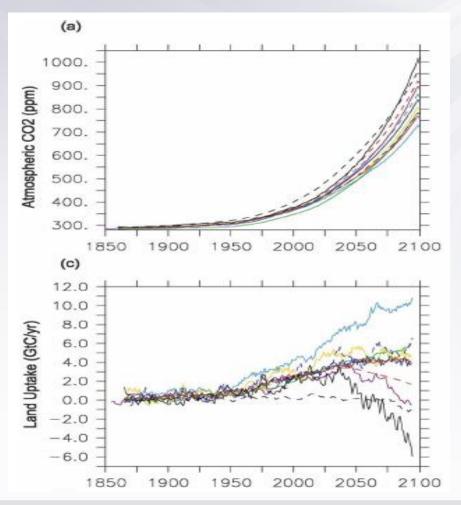




#### CLIMATE CHANGE SCIENCE INSTITUTE Oak Ridge National Laboratory

# **Uncertainty quantification in the ACME land model**

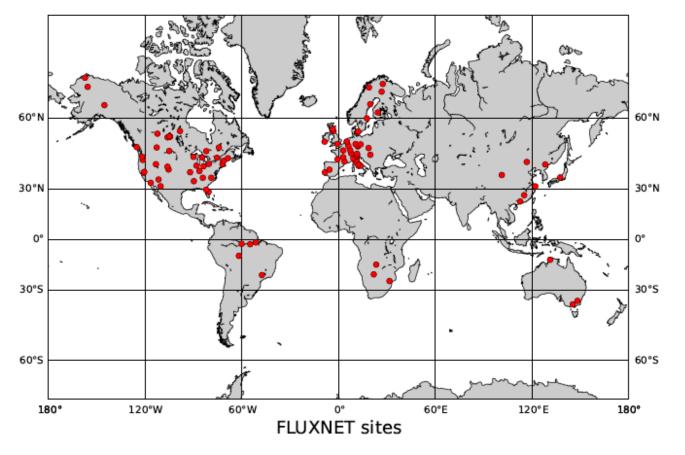
Daniel M. Ricciuto, Khachik Sargsyan, Dan Lu, Jiafu Mao, Peter Thornton


May 18<sup>th</sup>, 2016 ILAMB workshop





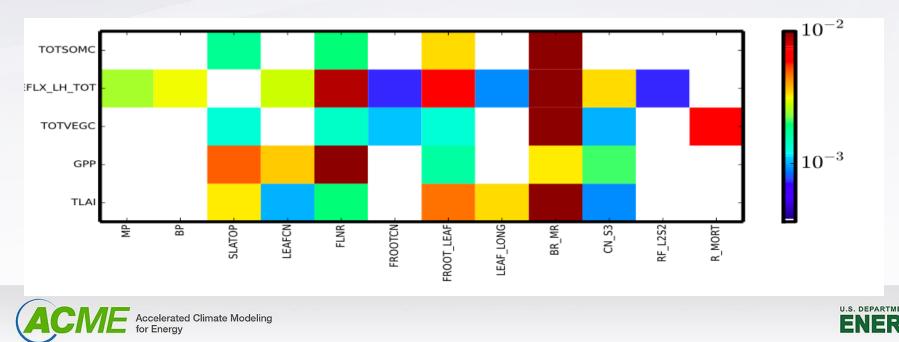
#### **Evaluating land model uncertainty**


- Traditionally, uncertainty has been estimated using multimodel comparisons
- Large uncertainties about future carbon flux
- Hard to distinguish various types of uncertainty (e.g. structural vs. parametric)
- Within-model uncertainty not well characterized
- Need for formal UQ methods

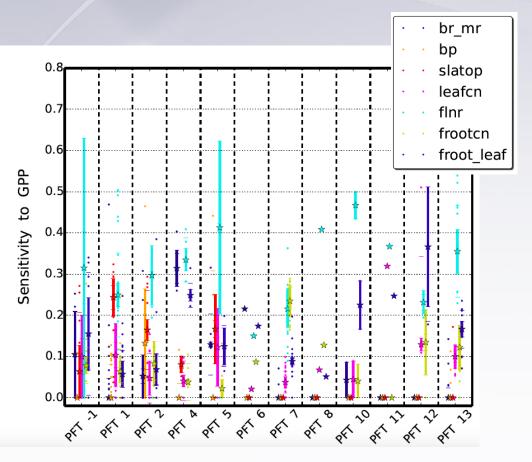


Friedlingstein et al 2006




# FLUXNET sensitivity analysis – ALM-CN



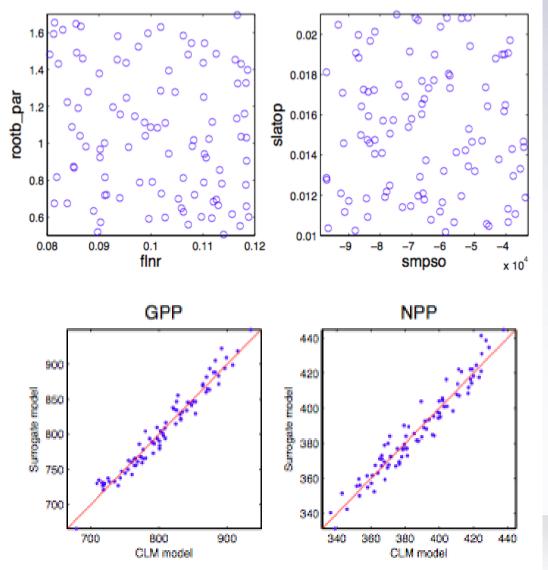

- 96 FLUXNET sites covering major biomes and plant functional types
- 68 input parameters varied over uniform prior ranges
- Sensitivity analysis with Bayesian Compressive Sensing (Sargsyan et al., 2014)
- Site-specific PFT, but reanalysis forcings/soil properties

#### Interpreting the results

- Variation in sensitivity with quantity of interest
  - Steady state fluxes and pools
  - Top 10-15 parameters vary, but remaining 50 are always insensitive
  - Maintenance respiration base rate (br\_mr)
  - R\_mort (mortality) only important for total vegetation biomass
  - Indirect controls: br\_mr affects total SOM carbon



# Sensitivity analysis: Interpreting the results

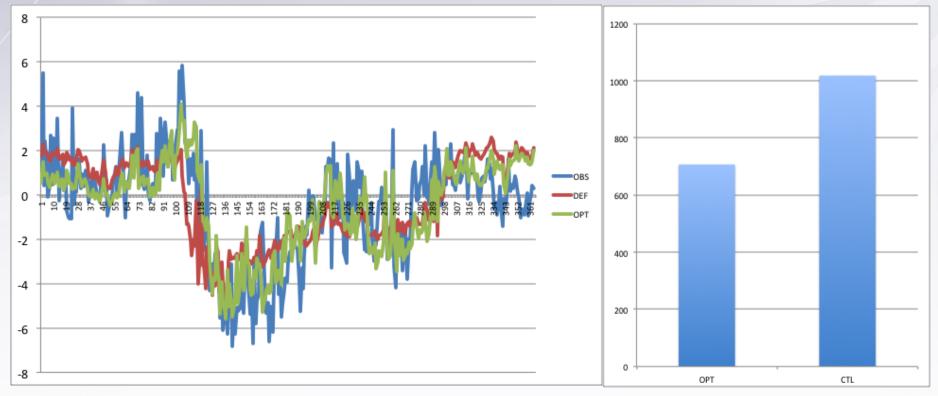



- Some parameters are sensitive everywhere (flnr)
- Maintenance respiration base rate (br\_mr) is critically important in tropical rainforests but not in other ecosystems.
- Relative consistence within PFTs
- Can provide guidance about where specific measurements or data are more valuable
- Reduction of parameter space for optimization





#### **Surrogate modeling applications**




- Goal: Model calibration
- CLM/ALM are too slow for methods to estimate posterior uncertainties (MCMC)
- Evaluate model at given sample points
- Construct a set of basis functions to represent the full model for a subset of outputs
- Additional uncertainty introduced, but high accuracy is achievable
- Combine with optimization approaches (e.g. GA)



#### **Model optimization and benchmarking**

- Example at US-MOz flux site
- Optimized ALM using 2006 NEE data, 30% RMSE reduction
- 1928-2006 simulation, 14 parameters (GA, full model)







### **Model optimization and benchmarking**

Default "PFT" parameters (benchmark) vs. optimized parameters



Accelerated Climate Modeling for Energy



# Multivariate optimization example: CLM at PiTS experimental site

- Pre-treatment observations of variables below
- A single spin-up and transient simulation through 2002 (default PFT-level parameters)
- Ensemble simulations 2002-2012
- 100 iterations of genetic algorithm
- Mao et al (2015)
- Can we increase predictive skill at other sites?

| State variable         | Units                                     | Observed    | PRE_STD | PRE_OPT | Bias reduction (%) |
|------------------------|-------------------------------------------|-------------|---------|---------|--------------------|
| Leaf carbon            | gCm <sup>-2</sup>                         | [182, 221]  | 419     | 209     | 96.55              |
| Stem carbon            | $\rm gCm^{-2}$                            | [973, 1220] | 1455    | 1027    | 88.49              |
| Root carbon            | $\rm gCm^{-2}$                            | 488         | 859     | 408     | 78.44              |
| Aboveground biomass    | $gCm^{-3}$                                | [728, 1758] | 1645    | 1236    | 98.26              |
| $\delta^{13}$ C leaf   | ‰                                         | -27.99      | -27.38  | -27.49  | 18.03              |
| $\delta^{13}$ C phloem | ‰                                         | -28.48      | -27.38  | -27.50  | 10.91              |
| $\delta^{13}$ C Root   | ‰                                         | -28.86      | -27.36  | -27.39  | 2.13               |
| Sap flow               | mm day $^{-1}$                            | 2.40        | 3.70    | 2.37    | 97.85              |
| Soil respiration       | $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> | 3.63        | 5.20    | 3.26    | 76.58              |

### UQ, optimization and benchmarking

- Sensitivity analysis: Determining which model parameters are sensitive for given benchmarks
  - ALM: Coherence of sensitivity within and among PFTs
  - Multi-model application will be useful (e.g. PecAn)
- Ensemble benchmarking
  - Consider parameter, driver, and structural uncertainty (compare PDFs of scores rather than individual numbers)
- Model calibration: Improving predictions
  - Use of a single dataset probably won't increase predictive skill
  - Multivariate optimization, use of emergent constraints
  - Independent data must be reserved for validation/benchmarking
  - Complex LSMs require more sophisticated approaches
  - Opportunity for standardization of workflows

ACCINE Accelerated Climate Modeling for Energy

