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Quantitative measures of fidelity of model simulations are essential for improving the 
usage and acceptability of model forecasts for real-world applications 

Characterization of accuracy and uncertainty in model predictions - to be used as a 
benchmark for future model enhancements 

 Motivation 
Need formal evaluation 

procedures to improve the 

“observability” of LSM 

processes 

Need a general benchmarking framework 

capable of capturing useful modes of variability of 

LSMs through a range of performance metrics is 

necessary for further advancing the performance 

and predictability of models 

Entekhabi et al., BAMS (1999) 

van den Hurk et al., BAMS (2011) 
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Figure 1 The multi-stage process for model-data fusion: a conceptual diagram showing the main steps (and the 

iterative nature of these steps) involved in a comprehensive data-model fusion. Fig. 1. The multi-stage process for model-data fusion: a conceptual

diagram showing the main steps (and the iterative nature of these

steps) involved in a comprehensive data-model fusion.

1 Introduction

Land surface models are important tools for understanding

and predicting mass and energy exchange between the ter-

restrial biosphere and atmosphere. A land surface model

(LSM) is a typical and critical component of larger domain

models, which are aimed at global integration, for example

global carbon cycle models and prognostic global climate

models. These integrated models are key tools for predict-

ing the likely future states of the Earth system under anthro-

pogenic forcing (IPCC, 2007), and for assessing feedbacks

with, and impacts on, the biosphere (MEA, 2005). Land sur-

face models represent the key processes regulating energy

and matter exchange – photosynthesis, respiration, evapo-

transpiration (Bonan, 1995; Foley et al., 1996; Williams et

al., 1996; Sellers et al., 1997), and their coupling. These

processes are sensitive to environmental drivers on a range

of timescales, for example, responding to diurnal changes

in insolation, and seasonal shifts in temperature and precip-

itation. Land surface processes influence the climate sys-

tem, through their control of energy balance and greenhouse

gas exchanges. Forecasts of global terrestrial C dynamics

that rely on LSMs show significant variability over decadal

timescales (Friedlingstein et al., 2006), especially when cou-

pled to climate, indicating that major uncertainties remain

in the representation of critical ecosystem processes and cli-

mate feedbacks within global models.

In recent years the widespread use of the eddy covari-

ance (EC) methodology has led to a large increase in data

on terrestrial land surface exchanges (Baldocchi et al., 2001).

FLUXNET is an international network of EC sites with data

processed according to standardized protocols (Papale et al.,

2006). The EC time-series data from FLUXNET provide rich

insights into exchanges of water, energy and CO2 across a

range of biomes and timescales. While LSM forward runs

are commonly compared with EC data, there is a grow-

ing consensus that models must be better constrained with

such data to address process uncertainty (Bonan, 2008). A

stronger link between models and observations is needed to

identify poorly represented or missing processes, and to pro-

vide confidence intervals on model parameter estimates and

forecasts.

New methods are becoming available to assist data anal-

ysis and generate links to models, based on the concept of

model-data fusion, MDF (Raupach et al., 2005). MDF en-

compasses a range of procedures for combining a set or sets

of observations and a model, while quantitatively incorporat-

ing the uncertainties of both. MDF is used to estimate model

states and/or parameters, and their respective uncertainties.

The objective of this paper is to provide guidance to the

LSM community on how to make better use of eddy covari-

ance data, particularly via MDF. We first outline the philo-

sophical principles behind model-data fusion for model im-

provement. We then discuss the structure of typical land sur-

face models and how they are parameterised. Next we de-

tail FLUXNET data availability and quality, specifically in

the context of land surface models. We discuss approaches

for model and data evaluation, focussing on new techniques

using time series and spatial analyses. Finally we discuss

formal model-data fusion and highlight the need for multiple

constraints in model evaluation and improvement, and effec-

tive assessment of model and data errors. We conclude with

a set of challenges for the LSM and MDF communities.

2 The philosophy of model-data fusion for model

improvement

Model calibration, evaluation, testing, and structural im-

provement (re-formulation) are all key aspects of model-data

fusion; in other words, MDF is not simply tuning model pa-

rameters to yield model predictions that match the calibra-

tion data. Rather, it is a multi-stage process (Fig. 1). At

each of these stages, there is interplay between data, model

structure, and modeller. The process details depends some-

what on whether the problem is focussed on state estimation

of the system, or on parameter estimation of the model. In

both cases a rigorous characterization of the model structure

through consistency checks and testing sensitivity to param-

eters and drivers, in the same way as in classical forward

modelling approaches, is still a prerequisite for a meaning-

ful data-model fusion. This model characterization also con-

stitutes the baseline against which any improvements and

reductions of uncertainties can be judged. If state estima-

tion is the goal, then model states are adjusted to generate

closer agreement with the observations. Further analysis can

make use of these state adjustments to identify poorly rep-

resented processes and their timings. It is important to en-

sure that state adjustments are consistent with all independent

Biogeosciences, 6, 1341–1359, 2009 www.biogeosciences.net/6/1341/2009/

MDF - the paradigm for combining 

information from models and data 

Use the information from data to help to 

formulation, characterization and evaluation 

of  models in a structured manner 

MDF and Benchmarking are two of the core 

themes of the GEWEX GLASS community 

A comprehensive evaluation and 

benchmarking framework is essential for 

enabling the MDF concept 

 Model-Data-Fusion (MDF) 

Land models 

LVT 

Willliams et al. (2009) 



 Definitions 

LVT functions both as a verification and 

benchmarking environment 

Evaluation - model outputs are compared to observations to 
derive an error measure  

Comparison - model is not just compared to observations, but 
also to other models  

Benchmarking - performance expectation defined a priori 
source: Best et al. (2015) 



 LVT - overview of current capabilities 

Designed to handle any two land relevant datasets  

Supports benchmarking using methods from linear regression to more complex methods.  

The supported datasets in LVT can be used to develop benchmarks 

Open source software 

Includes support for a range of in-situ, 

remote sensing and model/renalysis 

products 

Supports a range of metrics 

(diagnostics, deterministic, information-

theory, decision-theory, scale-

decomposition based metrics) 

Includes the capability to generate end-

user oriented hydrological products 

(drought/flood percentiles, indicators) 

Kumar et al. (2012), “Land surface Verification Toolkit (LVT) - a generalized framework for land surface model evaluation, Geosci. Model Dev., 5, 869-886. 



 General capabilities 

 Works with the datasets natively and reconciles 

the differences in spatial and temporal 

resolutions between the two datastreams being 

compared, by bringing them to a common (user 

specified space and time domain) 

 Support for data masking, spatial, temporal 

stratification, time-lagged computations 

Metric computations supported on a grid cell by 

grid cell basis or at basin scales.  

 Computes confidence intervals on the metric 

calculations; Calculates derived variables (e.g. 

bowen ratio) 

Datastream 1 

Datastream 2 

Analysis 

domain, 

resolution 

(user specified) 



 Software architecture 

3-layer architecture 

Specified as an object oriented 

framework with plugins defined 

for 

Analysis metrics 

Datastreams 

Training algorithms 

Analysis instances are enabled 

by a config file (no external 

scripting required) 



 Supported data streams 



 Supported analysis metrics 

Metric class Examples 

Diagnostics 
Mean, Standard deviation, Anomaly, Tendency, Min, Max, 

Sum, Maxtime, Mintime 

Accuracy  
ACC, Bias, CSI, ETS, FAR, FBIAS, MAE, NSE, PODY, 

PODN, POFD, Correlation, Anomaly Correlation, Tendency 

Correlation, unbiased RMSE 

Indicators SPI, SRI, SSWI, SSGI, percentiles, probabilistic percentiles 

Ensemble/Uncertainty Mean, Likelihood, Spread, Cross correlation, ME 

Information theory 
Metric entropy, Information gain, Effective complexity, 

Fluctuation complexity 

Scale decomposition Discrete wavelet transforms 

Spatial similarity Hausdorff norm 



 Examples of indicators (metrics of extremes) 

Root zone soil moisture based drought 

percentiles generated by LVT from a LSM run 
U.S. Drought Monitor estimate 

Jan 3, 2006 

Sept 27, 2011 

A suite of common, 

normalized indicators has 

been developed 

SPI, SRI, SSWI, SSGI, 

percentiles 

These indicators are 

computed as deviations 

from long term 

(fitted/computed) 

distributions 



 Information theory metrics 

Developed by Claude Shannon to find fundamental limits on 

signal processing 

Entropy - quantifies the uncertainty involved in predicting the value 

of a random variable 

Complexity - small for periodic sequences and completely random 

data  

from Pachepsky et al. (2006)  



 Information theory metrics application 



 Uncertainty quantification and analysis 

Uncertainty importance: An assessment of the relative contribution of each parameter to the 

ensemble spread (cross correlation between the simulated variable and the parameter, across the 

ensemble) 

Can be used to guide parameter optimization/uncertainty estimation studies 



 Remote sensing data analysis 

Root zone soil moisture is a leading 

indicator of subsequent vegetation 

anomalies. Under water stressed 

conditions, negative soil moisture 

anomalies should temporally precede a 

detectable impact on vegetation health.  

Lagged rank cross-correlation between 

model-derived root-zone soil moisture 

estimates and remotely sensed vegetation 

indices (MOD13C2) from LSMs of varying 

complexity are compared.  

Strong coupling in semi-arid areas of the 

world, weak coupling in humid regions 

Not a lot of added skill in the modern land 

surface models compared to the API 

model.  

Crow et al. (2012), “On the utility of land surface models for agricultural drought monitoring”, HESS, 16, 3451-3460. 

1 month lagged rank cross correlation of root zone soil moisture and VI 



 Benchmarking 

LVT provides two capabilities related to benchmarking:  

Develop a benchmark dataset by training any two of the supported datasets  

Compare the model runs to the benchmark dataset 

Training algorithms available (One/Two-variable regression; ANN - in development) 



 Summary 

LVT - an open source, formal model evaluation and benchmarking environment 

Facilitates the integration of in-situ, remote sensing and model/renalysis data products.  

Supports deterministic/probabilistic evaluation, a wide variety of traditional and non-
traditional metrics and benchmarking strategies 

Supports hydrologic variables primarily; easy to extend the support for 
ecosystem/biogeochemical variables.  

Ongoing work include support for newer datasets, spectral/cross-spectral analysis, 
data assimilation diagnostics 

AMS land surface benchmarking session – ideas/thoughts? 

http://lis.gsfc.nasa.gov 

http://lis.gsfc.nasa.gov
http://lis.gsfc.nasa.gov

